Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Artificial intelligence (AI) surpasses human accuracy in identifying ordinary objects, but it is still challenging for AI to be competitive in pollen grain identification. One reason for this gap is the extensive trait variation in pollen grains. In classical textbooks, pollen size relies on only 25-50 pollen grains, mostly for one plant and site. Lack of variation in pollen databases can cause limited application of machine learning approaches to real-world samples. Therefore, our study aims to investigate sources of spatial and temporal pollen trait variation for pollen morphology and fluorescence. For this purpose, 64,001 pollen grains from the four herbaceous and insect-pollinated plant species Achillea millefolium L., Lamium album L., Lathyrus vernus (L.) Bernh., and Lotus corniculatus L. sampled across four years and seven locations across Central Germany were measured using multispectral imaging flow cytometry. Observed trait variations were very species-specific; however, for most species, significant differences in spatial as well as temporal variation were found for at least one pollen trait. We could also show that this variability and the identity of a particular sample influence the accuracy of AI classifications and that multiple measurements of different origins provide the most robust AI-based identifications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cyto.a.24932 | DOI Listing |