Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This short communication presents preliminary findings on the integration of Large Language Models (LLMs) and wearable technology to generate personalized recommendations aimed at enhancing student well-being and academic performance. By analyzing diverse student data profiles, including metrics from wearable devices and qualitative feedback from academic reports, we conducted sentiment analysis to assess students' emotional states. The results indicate that LLMs can effectively process and analyze textual data, providing actionable insights into student engagement and areas needing improvement. This approach demonstrates the potential of LLMs in educational settings, offering a more nuanced understanding of student needs compared to traditional methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/SHTI250044 | DOI Listing |