98%
921
2 minutes
20
Introduction: The long-term success of dental implants depends on the preservation of supporting tissues over time. Recent studies have highlighted the release of titanium particles as a potential etiology for the onset and progression of peri-implant diseases modulated by inflammatory biomarkers. This study provides a comprehensive analysis of surface changes associated with high insertion torque placement.
Methods: Three groups of cylindrical threaded dental implants, each representing different surface topographies produced by anodization or a combination of grit-blasting and acid-etching processes, were inserted into fresh cow rib bone blocks used to mimic human jaws. Individual bone blocks were fabricated with a dimension of 20 × 15 × 15 mm, randomly assigned to the three implant groups. Prior to dental implant placement, the bone blocks were divided in half to facilitate implant removal without introducing additional damage. The drilling protocol was modified, excluding the final drill recommended by the manufacturer to ensure higher insertion torque values during the procedure. Dental implants were removed from the bone blocks and processed for analysis. Surface roughness was characterized using interferometry on the same area before and after insertion. Scanning electron microscopy (SEM) with a back-scattered electron detector (BSD) was employed to identify the implant surface and loose particles at the bone block interface.
Results: The high insertion torque protocol used in this study resulted in higher insertion torque values compared to manufacturers' protocol, but no difference was observed when comparing the three implant groups. Surface roughness characterization revealed that amplitude and hybrid roughness parameters for all three groups were lower after insertion. The surfaces exhibiting a predominance of peaks (Ssk [skewness] > 0) associated with higher structures (height parameters) showed greater damage at the crests of the threads, while no changes were observed in the valleys of the threads. SEM-BSD images revealed loose titanium particles at the bone blocks interface, predominantly at the crestal cortical bone level.
Conclusions: High insertion torque resulted in surface damage at the crests of threads, which subsequently led to the release of titanium particles primarily at the bone crest. The initial release of titanium particles during implant insertion at the bone-implant interface warrants further exploration as a potential cofactor for marginal bone loss.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11978974 | PMC |
http://dx.doi.org/10.1111/cid.70030 | DOI Listing |
Adv Mater
September 2025
College of Physics, Donghua University, Shanghai, 201620, China.
The 180° switching of the perpendicular Néel vector induced by the spin-orbit torque (SOT) presents significant potential for ultradense and ultrafast antiferromagnetic SOT-magnetoresistive random-access memory. However, its experimental realization remains a topic of intense debate. Here, unequivocal evidence is provided for the SOT-induced 180° switching of the perpendicular Néel vector in collinear antiferromagnetic CrO in a Pt/CrO/Co trilayer structure.
View Article and Find Full Text PDFInt J Oral Implantol (Berl)
September 2025
Purpose: To evaluate changes in implant stability quotient values of hydrophilic tissue-level implants over time, and to investigate the influence of local factors on variations in these values.
Methods: Fifty tapered, self-tapping, tissue-level implants with a hydrophilic surface were placed and monitored for 12 months. Implant stability quotient values were recorded at the time of insertion (T0) and monthly thereafter for 12 months.
Clin Implant Dent Relat Res
October 2025
Faculty of Dentistry, Department of Prosthodontics, Istanbul University, Istanbul, Turkey.
Introduction: Screw loosening remains a frequent mechanical complication in implant-supported prostheses, primarily caused by the gradual loss of abutment-screw preload. The aim of this study was to evaluate the mechanical performance of CAD-CAM custom and stock abutments by measuring removal torque values (RTV) at multiple time points and assessing surface morphology by scanning electron microscopy (SEM), following prolonged loading up to 2 × 10 cycles.
Methods: Forty-four implant-abutment assemblies with an internal conical-hex connection were divided into two groups: Stock abutments (SA) and custom abutments (CA).
Clin Oral Implants Res
September 2025
Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry Araçatuba, São Paulo, Brazil.
Introduction: Odanacatib (ODN), a cathepsin K inhibitor, is a drug that reduces bone resorption while preserving bone formation. ODN was initially developed for the treatment of postmenopausal osteoporosis, but further development as a systemic medication has been discontinued. Here, we propose ODN as a topical treatment, the coating of dental implants, to achieve an anabolic shift of early osseointegration.
View Article and Find Full Text PDFSpine (Phila Pa 1976)
September 2025
Department of Neurosurgery, Donald and Barbara Zucker Hofstra School of Medicine at Northwell, Manhasset, NY, USA.
Study Design: Cross-sectional study.
Objective: This study aimed to analyze the failure patterns of expandable corpectomy cages.
Summary Of Background Data: Expandable corpectomy cages offer significant advantages for anterior column reconstruction but introduce unique mechanical complexities.