98%
921
2 minutes
20
Mitochondrial endosymbiosis was a pivotal event in eukaryotic evolution, requiring core proteins to adapt to function both within the mitochondria and in the host cell. Here, we systematically profile the localization of protein isoforms generated by alternate start codon selection during translation. We identify hundreds of pairs of differentially-localized protein isoforms, many of which affect mitochondrial targeting and are essential for mitochondrial function. The emergence of dual-localized mitochondrial protein isoforms coincides with mitochondrial acquisition during early eukaryotic evolution. We further reveal that eukaryotes use diverse mechanisms-such as leaky ribosome scanning, alternative transcription, and paralog duplication-to maintain the production of dual-localized isoforms. Finally, we identify multiple isoforms that are specifically dysregulated by rare disease patient mutations and demonstrate how these mutations can help explain unique clinical presentations. Together, our findings illuminate the evolutionary and pathological relevance of alternative translation initiation, offering new insights into the molecular underpinnings of mitochondrial biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974929 | PMC |
http://dx.doi.org/10.1101/2025.03.27.645657 | DOI Listing |
Am J Hum Genet
September 2025
Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, Rotterdam 3000 CA, the Netherlands.
Microtubule-actin cross-linking factor 1 (MACF1) is a large protein of the spectraplakin family, which is essential for brain development. MACF1 interacts with microtubules through the growth arrest-specific 2 (Gas2)-related (GAR) domain. Heterozygous MACF1 missense variants affecting the zinc-binding residues in this domain result in a distinctive cortical and brain stem malformation.
View Article and Find Full Text PDFCurr Biol
September 2025
Department of Molecular and Cellular Biology, University of California, 1 Shields Avenue, Davis, CA 95616, USA. Electronic address:
Nuclear migration plays a fundamental role in development, requiring precise spatiotemporal control of bidirectional movement through dynein and kinesin motors. Here, we uncover a differential isoform-dependent mechanism for developmental regulation of nuclear migration directionality. The nuclear envelope Klarsicht/ANC-1/Syne homology (KASH) protein UNC-83 in Caenorhabditis elegans exists in multiple isoforms that differentially control motor activity to achieve tissue-specific nuclear positioning.
View Article and Find Full Text PDFPLoS Genet
September 2025
Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India.
Tropomyosin is an actin-binding protein (ABP) which protects actin filaments from cofilin-mediated disassembly. Distinct tropomyosin isoforms have long been hypothesized to differentially sort to subcellular actin networks and impart distinct functionalities. Nevertheless, a mechanistic understanding of the interplay between Tpm isoforms and their functional contributions to actin dynamics has been lacking.
View Article and Find Full Text PDFArch Pharm Res
September 2025
College of Pharmacy, Hanyang University, Ansan, 15588, Republic of Korea.
c-Jun N-terminal kinases (JNKs), a subfamily of mitogen-activated protein kinases (MAPKs), are key mediators of cellular responses to environmental stress, inflammation, and apoptotic signals. The three isoforms-JNK1, JNK2, and JNK3 exhibit both overlapping and isoform-specific functions. While JNK1 and JNK2 are broadly expressed across tissues and regulate immune signaling, cell proliferation, and apoptosis, JNK3 expression is largely restricted to the brain, heart, and testis, where it plays a crucial role in neuronal function and survival.
View Article and Find Full Text PDFACS Omega
September 2025
Department of Chemistry, Faculty of Arts and Sciences, Kafkas University, 36040 Kars, Turkey.
In this study, we synthesized a series of novel -acetyl Schiff bases (-) containing 1,2,4-triazole moiety and evaluated their potential as anticancer agents through both experimental and computational approaches. Cytotoxicity assays on prostate cancer (PC) (DU145) and normal epithelial cells (PNT1a) demonstrated selective inhibition, particularly for compounds , , and , with IC values of 73.25, 49.
View Article and Find Full Text PDF