98%
921
2 minutes
20
Gastrointestinal (GI) dysfunction emerges years before motor symptoms in Parkinson's disease (PD), implicating the enteric nervous system (ENS) in early disease progression. However, the mechanisms linking the PD hallmark protein, α-synuclein (α-syn), to ENS dysfunction - and whether these mechanisms are influenced by inflammation - remains elusive. Using iPSC-derived enteric neural lineages from patients with α-syn triplications, we reveal that TNF-α increases mitochondrial-α-syn interactions, disrupts the malate-aspartate shuttle, and forces a metabolic shift toward glutamine oxidation. These alterations drive mitochondrial dysfunction, characterizing metabolic impairment under cytokine stress. Interestingly, targeting glutamate metabolism with Chicago Sky Blue 6B restores mitochondrial function, reversing TNF-α-driven metabolic disruption. Our findings position the ENS as a central player in PD pathogenesis, establishing a direct link between cytokines, α-syn accumulation, metabolic stress and mitochondrial dysfunction. By uncovering a previously unrecognized metabolic vulnerability in the ENS, we highlight its potential as a therapeutic target for early PD intervention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974853 | PMC |
http://dx.doi.org/10.1101/2025.03.25.644826 | DOI Listing |
bioRxiv
March 2025
Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
Gastrointestinal (GI) dysfunction emerges years before motor symptoms in Parkinson's disease (PD), implicating the enteric nervous system (ENS) in early disease progression. However, the mechanisms linking the PD hallmark protein, α-synuclein (α-syn), to ENS dysfunction - and whether these mechanisms are influenced by inflammation - remains elusive. Using iPSC-derived enteric neural lineages from patients with α-syn triplications, we reveal that TNF-α increases mitochondrial-α-syn interactions, disrupts the malate-aspartate shuttle, and forces a metabolic shift toward glutamine oxidation.
View Article and Find Full Text PDFSemin Arthritis Rheum
February 2025
Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN, 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
Background: Rheumatoid Arthritis is a systemic autoimmune disease affecting 0.5-1 % of the population. Despite a growing therapeutic armamentarium, RA remains incurable, and many patients suffer significant morbidity over time.
View Article and Find Full Text PDFCell Mol Biol Lett
March 2024
Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
Aspartate-glutamate carrier isoform 1 (AGC1) is a carrier responsible for the export of mitochondrial aspartate in exchange for cytosolic glutamate and is part of the malate-aspartate shuttle, essential for the balance of reducing equivalents in the cells. In the brain, mutations in SLC25A12 gene, encoding for AGC1, cause an ultra-rare genetic disease, reported as a neurodevelopmental encephalopathy, whose symptoms include global hypomyelination, arrested psychomotor development, hypotonia and seizures. Among the biological components most affected by AGC1 deficiency are oligodendrocytes, glial cells responsible for myelination processes, and their precursors [oligodendrocyte progenitor cells (OPCs)].
View Article and Find Full Text PDFMol Genet Metab Rep
June 2024
University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Switzerland.
Unlabelled: Mitochondrial malate dehydrogenase 2 (MDH2) is crucial to cellular energy generation through direct participation in the tricarboxylic acid (TCA) cycle and the malate aspartate shuttle (MAS). Inherited MDH2 deficiency is an ultra-rare metabolic disease caused by bi-allelic pathogenic variants in the gene, resulting in early-onset encephalopathy, psychomotor delay, muscular hypotonia and frequent seizures. Currently, there is no cure for this devastating disease.
View Article and Find Full Text PDFSeizure
March 2024
Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Turkey.
Purpose: Developmental and Epileptic Encephalopathies (DEEs) are rare neurological disorders characterized by early-onset medically resistant epileptic seizures, structural brain malformations, and severe developmental delays. These disorders can arise from mutations in genes involved in vital metabolic pathways, including those within the brain. Recent studies have implicated defects in the mitochondrial malate aspartate shuttle (MAS) as potential contributors to the clinical manifestation of infantile epileptic encephalopathy.
View Article and Find Full Text PDF