Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Ligand-receptor interactions mediate intercellular communication, inducing transcriptional changes that regulate physiological and pathological processes. Ligand-induced transcriptomic signatures can be used to predict active ligands; however, the absence of a comprehensive set of ligand-response signatures has limited their practical application in predicting ligand-receptor interactions. To bridge this gap, we developed Lignature, a curated database encompassing intracellular transcriptomic signatures for 362 human ligands, significantly expanding the repertoire of ligands with available intracellular response signatures. Lignature compiles signatures from published transcriptomic datasets and established resources such as CytoSig and ImmuneDictionary, generating both gene- and pathway-based signatures for each ligand. We applied Lignature to predict active ligands driving transcriptomic changes in controlled experiments and real-world single-cell sequencing datasets. Lignature outperformed existing methods such as NicheNet, achieving higher accuracy in identifying active ligands at both the gene and pathway levels. These results establish Lignature as a robust platform for ligand signaling inference, providing a powerful tool to explore ligand-receptor interactions across diverse experimental and physiological contexts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974740 | PMC |
http://dx.doi.org/10.1101/2025.03.22.644770 | DOI Listing |