A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Motion artifact-controlled micro-brain sensors between hair follicles for persistent augmented reality brain-computer interfaces. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Modern brain-computer interfaces (BCI), utilizing electroencephalograms for bidirectional human-machine communication, face significant limitations from movement-vulnerable rigid sensors, inconsistent skin-electrode impedance, and bulky electronics, diminishing the system's continuous use and portability. Here, we introduce motion artifact-controlled micro-brain sensors between hair strands, enabling ultralow impedance density on skin contact for long-term usable, persistent BCI with augmented reality (AR). An array of low-profile microstructured electrodes with a highly conductive polymer is seamlessly inserted into the space between hair follicles, offering high-fidelity neural signal capture for up to 12 h while maintaining the lowest contact impedance density (0.03 kΩ·cm) among reported articles. Implemented wireless BCI, detecting steady-state visually evoked potentials, offers 96.4% accuracy in signal classification with a train-free algorithm even during the subject's excessive motions, including standing, walking, and running. A demonstration captures this system's capability, showing AR-based video calling with hands-free controls using brain signals, transforming digital communication. Collectively, this research highlights the pivotal role of integrated sensors and flexible electronics technology in advancing BCI's applications for interactive digital environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12012477PMC
http://dx.doi.org/10.1073/pnas.2419304122DOI Listing

Publication Analysis

Top Keywords

motion artifact-controlled
8
artifact-controlled micro-brain
8
micro-brain sensors
8
sensors hair
8
hair follicles
8
augmented reality
8
brain-computer interfaces
8
impedance density
8
sensors
4
follicles persistent
4

Similar Publications