Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Reports indicate a growing role for artificial intelligence (AI) in the evaluation of pancreaticobiliary and hepatic conditions. A key focus is differentiating between benign and malignant lesions, which is crucial for treatment decisions. AI improves diagnostic accuracy through high sensitivity and specificity, while CNN algorithms enhance image analysis and reduce variability. These advancements aim to match the accuracy of pathologists in cancer detection. In addition, AI aids in identifying diagnostic markers, as early detection is essential. This article reviews the applications of machine learning and deep learning in the diagnosis of hepatic and pancreaticobiliary diseases. Although the use of AI in these specialized areas of gastroenterology is primarily confined to experimental trials, current models demonstrate significant potential for enhancing the detection, evaluation, and treatment planning of hepatic and pancreaticobiliary conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MCG.0000000000002125 | DOI Listing |