Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Swimming kinematics and macroscale mechanical testing have shown that the vertebral column of sharks acts as a biological spring, storing and releasing energy during locomotion. Using synchrotron X-ray nanotomography and deep-learning image segmentation, we studied the ultrastructure and deformation mechanism of mineralized shark vertebrae from (Blacktip shark). The vertebral centrum con regions: the corpus calcareum, a hypermineralized double cone, and the intermediale, blocks of mineralized cartilage interspersed by unmineralized arches. At the micron scale, mineralized cartilage has previously been described as a 3D network of interconnected mineral plates that vary in thickness and spacing. The corpus calcareum consists of stacked, interconnected, curved mineralized planes permeated by a network of organic occlusions. The mineral network in the intermedialia resembles trabecular bone, including thicker struts in the direction opposite to the predominant biological strain. We characterized collagenous fiber elements winding around lacunar spaces in the intermedialia, and we hypothesize the swirling arrangement and elasticity of the fibers to be distributing stress. With little permanent deformation detected in mineralized structures, it is likely that the soft organic matrix is crucial for absorbing energy through deformation, irreversible damage, and viscoelastic behavior. In the corpus calcareum, cracks typically terminate toward thick struts along the mineral planes, resembling the microscale crack deflection and arrest mechanism found in other staggered biocomposites, such as nacre or bone. Using transmission electron microscopy (TEM), we observed preferentially oriented, needlelike bioapatite crystallites and d-band patterns of collagen type-II fibrils resulting from intrafibrillar mineralization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.5c02004 | DOI Listing |