98%
921
2 minutes
20
Gels comprised of dynamic bonds are important candidates for the emerging 'intelligent' gels due to their unique characteristics. We report a universal law of hierarchical gel dynamics arising from association-dissociation of physical crosslinks, as discerned from dynamic light scattering (DLS) on diverse sets of complex gels. It is the first experimental evidence of a stretched exponential decay with a universal exponent 1/3 in DLS for all the physical gels, complementing more than five decades of DLS studies on conventional chemical gels. Here we show that diversely different chemistries of dynamic bonds map into the observed unifying law for large-scale collective dynamical properties of physical gels. This discovery allows identification of whether physical or chemical bonds dominate the crosslinks in complex gels, as well as extraction of local energetics of the constituent physical crosslinks by their characteristic relaxation times. It also elicits large-scale functional properties applicable in smart gels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971448 | PMC |
http://dx.doi.org/10.1038/s41467-025-58571-2 | DOI Listing |
Nat Nanotechnol
September 2025
Department of Bioengineering, Rice University, Houston, TX, USA.
Maintaining safe and potent drug levels in vivo is challenging. Multidomain peptides assemble into supramolecular hydrogels with a well-defined, highly porous nanostructure that makes them attractive for drug delivery. However, their ability to extend release is typically limited by rapid drug diffusion.
View Article and Find Full Text PDFJ Ethnopharmacol
September 2025
State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Na
Ethnopharmacological Relevance: The traditional Chinese medicine Psoralea corylifolia L. (PCL) has been clinically used to treat diarrhea and gastrointestinal inflammatory disorders. G protein-coupled receptor 84 (GPR84) is emerging as a potential target for inflammatory bowel disease (IBD).
View Article and Find Full Text PDFJ Phys Chem B
September 2025
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
Understanding the evaporation mechanism of liquid ethanol and ethanol-water binary mixtures is important for numerous scientific and industrial processes. The amount of water in liquid water-ethanol mixtures can significantly affect how quickly ethanol molecules evaporate. Here, we study the mechanism and rate of evaporation of ethanol from pure liquid ethanol and ethanol/water binary mixtures through both unbiased molecular dynamics simulations and biased simulations using the umbrella sampling method.
View Article and Find Full Text PDFJ Phys Chem A
September 2025
Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14850, United States.
Ionic liquids (ILs) have been gaining increasing focus in a variety of applications including emerging electric-propulsion concepts. A quantitative understanding of how IL ions fragment during high-energy collisions with background gases is therefore essential for interpreting mass spectra, predicting ion lifetimes in plasma and vacuum environments, and designing IL-based technologies. This work uses molecular dynamics (MD) simulations with a reactive force field to numerically model the collision-induced dissociation (CID) of isolated ions (both positive and negative) and ion clusters (2:1 and 1:2 clusters) of the prototypical ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF), colliding with a nitrogen (N) molecule, exploring all possible fragmentation channels arising from the breaking of both ionic and covalent bonds at collision energies ranging from 10 electron volts (eV) to 100 electron volts (eV) in the laboratory frame.
View Article and Find Full Text PDFPLoS One
September 2025
Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt.
Polar protic and aprotic solvents can effectively simulate the maturation of breast carcinoma cells. Herein, the influence of polar protic solvents (water and ethanol) and aprotic solvents (acetone and DMSO) on the properties of 3-(dimethylaminomethyl)-5-nitroindole (DAMNI) was investigated using density functional theory (DFT) computations. Thermodynamic parameters retrieved from the vibrational analysis indicated that the DAMNI's entropy, heat capacity, and enthalpy increased with rising temperature.
View Article and Find Full Text PDF