A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Heterocyclic Group Functionalized Siloxane-Based Polymers for Interruption of pH-Dependent Marine Settlement. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Marine biofouling is the natural accumulation of organisms on substrates that reside in rivers, lakes, and seas. To combat this issue, polymer-based coatings historically utilized tin or copper compounds, which, though effective, are also highly toxic. In this study, a series of functionalized toxicant-free PDMS-type polymers were designed with pH buffer and zwitterionic moieties for fouling inhibition. The water contact angles ranged from 41 to 98°, demonstrating significant differences in the wettability of the coated surfaces. XPS and SEM-EDS testing confirmed the surface presence of buffer and zwitterionic functional groups. Assays were carried out using both laboratory and field testing against an array of marine species to gain an understanding of how these buffered polymer coatings hold up in the environment and to measure their antifouling and fouling-release capabilities. The organisms used for testing were a diatom, , and two types of tubeworms, spirorbid and nonspirorbid serpulids. Piperazine and piperazine zwitterionic-based coatings performed the best overall as antifouling and fouling-release materials. Preliminary biological assays suggest that hydrophobic zwitterion-functionalized siloxane-based polymers may have both preventative antibacterial and antifouling interactions with target species compared to previously studied hydrophobic materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c05179DOI Listing

Publication Analysis

Top Keywords

siloxane-based polymers
8
buffer zwitterionic
8
antifouling fouling-release
8
heterocyclic group
4
group functionalized
4
functionalized siloxane-based
4
polymers interruption
4
interruption ph-dependent
4
ph-dependent marine
4
marine settlement
4

Similar Publications