98%
921
2 minutes
20
Artificial intelligence (AI) has gained significant attention in various scientific fields due to its ability to process large datasets. In nuclear radiation physics, while AI presents exciting opportunities, it cannot replace physics-based models essential for explaining radiation interactions with matter. To combine the strengths of both, we have developed and open-sourced the Radiation Protection Toolkit for Radioisotopes with Artificial Intelligence (RAPTOR-AI). This toolkit integrates AI with the Particle and Heavy Ion Transport code System (PHITS) Monte Carlo package, enabling rapid radiation protection analysis for radioisotopes and structural shielding. RAPTOR-AI is particularly valuable for emergency scenarios, allowing quick dose dispersion assessments when a facility's structural map is available, enhancing safety and response efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.apradiso.2025.111797 | DOI Listing |
J Nucl Med Technol
September 2025
Medical Physics Unit, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.
The glomerular filtration rate (GFR) is a key measure of renal function, typically estimated using creatinine-based equations. More precise clearance measurements are obtained with radiotracers, such as [Tc]Tc-diethylenetriaminepentaacetic acid (DTPA), and blood samples over several hours. However, standard plasma clearance methods require labor-intensive plasma preparation, limiting efficiency in clinical practice.
View Article and Find Full Text PDFAppl Radiat Isot
August 2025
Department of Physics, St.Joseph's College (Autonomous), Affiliated To Bharathidasan University, Tiruchirappalli 620 002, TamilNadu, India.
textcolorred This study reports the green synthesis, characterization, and radiation shielding performance of BaOBiO nanocomposites using Euphorbia tirucalli latex as a reducing agent. Structural analysis via PXRD confirmed distinct crystalline phases, and SEM revealed agglomerated nanoparticles below 500 nm. The UV-Vis spectra showed a wide optical bandgap of 3.
View Article and Find Full Text PDFJ Radiol Prot
September 2025
Centre for Radiation Protection Research, Stockholm University, Svante Arrheniusväg 20C, 106 91 Stockholm, Sweden.
The System of Radiological Protection (the "System") developed by the International Commission on Radiological Protection (ICRP) is built on nearly a century of efforts of numerous scientists and practitioners working together internationally. It rests on three enduring pillars: science, ethics, and experience. These pillars support the three fundamental principles that shape radiological protection strategies: justification, optimisation, and application of dose limits.
View Article and Find Full Text PDFWien Klin Wochenschr
September 2025
Section Editor (Imaging), Wiener Klinische Wochenschrift, Vienna, Austria.
Radiat Environ Biophys
September 2025
Environmental Physics Department, Institute for Energy Security and Environmental Safety, HUN-REN Centre for Energy Research, Budapest, Hungary.
Variability in radiation-related health risk and genetic susceptibility to radiation effects within a population is a key issue for radiation protection. Besides differences in the health and biological effects of the same radiation dose, individual variability may also affect dose distribution and its consequences for the same exposure. As exposure to radon progeny affects a large population and has a well-established dose-effect relationship, investigating individual variability upon radon exposure may be particularly important.
View Article and Find Full Text PDF