Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Recently, artificial intelligence (AI) has emerged as a transformative tool, enhancing the speed, accuracy, and scalability of bacterial diagnostics. This review explores the role of AI in revolutionizing bacterial detection and antimicrobial susceptibility testing (AST) by leveraging machine learning models, including Random Forest, Support Vector Machines (SVM), and deep learning architectures such as Convolutional Neural Networks (CNNs) and transformers. The integration of AI into these methods promises to address the current limitations of traditional techniques, offering a path toward more efficient, accessible, and reliable diagnostic solutions. In particular, AI-based approaches have demonstrated significant potential in resource-limited settings by enabling cost-effective and portable diagnostic solutions, reducing dependency on specialized infrastructure, and facilitating remote bacterial detection through smartphone-integrated platforms and telemedicine applications. This review highlights AI's transformative role in automating data analysis, minimizing human error, and delivering real-time diagnostic results, ultimately improving patient outcomes and optimizing healthcare efficiency. In addition, we not only examine the current advances in machine learning and deep learning but also review their applications in plate counting, mass spectrometry, morphology-based and motion-based microscopic detection, holographic microscopy, colorimetric and fluorescence detection, electrochemical sensors, Raman and Surface-Enhanced Raman Spectroscopy (SERS), and Atomic Force Microscopy (AFM) for bacterial diagnostics and AST. Finally, we discuss the future directions and potential advancements in AI-driven bacterial diagnostics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2025.117399 | DOI Listing |