A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Graph-Based Prediction of miRNA-Drug Associations with Multisource Information and Metapath Enhancement Matrices. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent studies have demonstrated that miRNA expression dysregulation is closely related to the occurrence of various diseases; thus, miRNA-based drug development strategies have received increasing research interest. Most existing computational methods focus on the attribute information of individual nodes and are limited to the direct associations between nodes, thereby ignoring the complex associations inherent in the network. This limitation may lead to the loss of key potential information, which impacts the prediction accuracy. To address these issues, we propose a multisource information fusion and metapath enhancement matrix based graph autoencoder (MSMP-GAE) to predict the potential associations between miRNAs and drugs. The proposed MSMP-GAE model comprises a metapath instance extraction module, a metapath feature-enhanced encoder module, a weighted feature fusion module, and a graph autoencoder. First, we construct an miRNA-drug heterogeneous network using experimentally validated miRNA-drug interactions and integrate various miRNA and drug features into an initial feature matrix to comprehensively represent their intrinsic property information. Then, we extract metapath instances from the interaction network, generate multiple metapath enhancement matrices, and fuse them with the initial feature matrix to generate high-quality node feature embeddings. Finally, we employ the graph autoencoder for fivefold cross-validation on a public dataset and test it on an independent test set. Experimental results demonstrate that the proposed MSMP-GAE model obtained an area under the curve (AUC) and AUPR values of 98.61% and 98.23%, respectively, which is considerably better than the several state-of-the-art methods. This highlights the importance of the higher-order complex associations between nodes in the miRNA-drug association (MDA) prediction task and provides a new method and approach to advance MDA prediction.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2025.3558303DOI Listing

Publication Analysis

Top Keywords

metapath enhancement
12
graph autoencoder
12
enhancement matrices
8
associations nodes
8
complex associations
8
proposed msmp-gae
8
msmp-gae model
8
initial feature
8
feature matrix
8
mda prediction
8

Similar Publications