Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The structural and optical properties, as well as the electrical and biological characteristics of a porous platinum (Pt) structure for neurostimulation applications, are investigated. Critical factors such as biocompatibility, electrical performance, and structural and optical differences, which can adversely affect the functionality of implantable devices, are systematically analyzed and compared with general electrodes. By employing an integration of three-dimensional simulations and implantation experiments, we demonstrate that the remarkably extensive surface area, low reflectance, and outstanding peak current values inherent in porous Pt facilitate effective stimulation while simultaneously ensuring a high degree of biological safety. Our findings suggest that these beneficial characteristics collectively position porous Pt as a notably promising candidate for implantable electrodes in biomedical devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.4c01974DOI Listing

Publication Analysis

Top Keywords

structural optical
12
electrical biological
8
porous platinum
8
investigation structural
4
optical electrical
4
biological properties
4
porous
4
properties porous
4
platinum electrode
4
electrode neurostimulation
4

Similar Publications

Metal-organic frameworks (MOFs) are transformative platforms for heterogeneous catalysis, but distinguishing atomically dispersed metal sites from subnanometric clusters remains a major challenge. This often demands the integration of multiple characterization techniques, many of which either lack the resolving power to distinguish active sites from their surrounding environments (e.g.

View Article and Find Full Text PDF

It is anticipated that wide-bandgap semiconductors (WBGSs) would be useful materials for energy production and storage. A well-synthesized, yet scarcely explored, diamond-like quaternary semiconductor LiZnGeS has been considered for this work. Herein, we have employed two well-known functionals GGA and mGGA within a framework of density functional theory (DFT).

View Article and Find Full Text PDF

Designing two-photon molecular emitters in nanoparticle-on-mirror cavities.

Nanoscale Horiz

September 2025

Theoretical Chemical Physics Group, Research Institute for Materials Science and Engineering, University of Mons, 20 Place du Parc, Mons B-7000, Belgium.

Two-photon spontaneous emission (TPSE) is a second-order quantum process with promising applications in quantum optics that remains largely unexplored in molecular systems, which are usually very inefficient emitters. In this work, we model the first molecular two-photon emitters and establish the design rules, highlighting their differences from those governing two-photon absorbers. Using both time-dependent density functional theory and Pariser-Parr-Pople calculations, we calculate TPSE in three π-conjugated molecules and identify a dominant pathway.

View Article and Find Full Text PDF

Inorganic halide perovskites have been the subject of intensive research for their unique properties. Most current research focuses on halide ion exchange to modify the luminescence band gap and optical features. They are obtained mainly in colloids or thin layers, resulting in small grains with a narrow distribution.

View Article and Find Full Text PDF

Molecular engineering based on four-arm perylene diimide chromophores toward hypoxia-induced specific photothermal therapy.

J Mater Chem B

September 2025

Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.

Perylene diimide (PDI) radical anions have attracted increasing attention as hypoxia-responsive photothermal agents due to their strong near-infrared (NIR) absorption and efficient photothermal conversion. However, their biomedical application is often limited by aggregation-induced quenching and poor structural tunability. In this work, we report a rationally engineered four-arm PDI derivative (PDI-4Alky·4Cl) bearing terminal alkyne groups, which not only suppresses π-π stacking steric and electrostatic repulsion, but also serves as a versatile molecular scaffold for further functionalization.

View Article and Find Full Text PDF