High glucose induces FABP3-mediated membrane rigidity via downregulation of SIRT1.

Biochim Biophys Acta Gen Subj

Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Aventi Inc., Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology(UST), Daejeo

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

High glucose induces an atypical lipid composition in skeletal muscle, leading to loss of muscle mass and strength. However, the mechanisms underlying this glucose toxicity are not fully understood. Analysis of genes associated with a phenotype using the BXD phenome resource revealed that increased Fabp3 expression in skeletal muscle correlated with hyperglycemia. FABP3 expression was also increased in hyperglycemic mouse models such as leptin-deficient ob/ob, Ins2Akita, and high-fat fed mice, as well as in aged mice. In cultured myotubes, high glucose elevated the mRNA and protein levels of FABP3, which contributes to decreased membrane fluidity, along with other mechanisms. FABP3 expression was dependent on the NAD/NADH ratio and SIRT1 activity, suggesting a mechanism by which FABP3 is upregulated in hyperglycemic conditions. Our findings propose that FABP3 links hyperglycemia to atypical membrane physicochemical properties, which may weaken contractile and metabolic function, particularly in skeletal muscle.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2025.130802DOI Listing

Publication Analysis

Top Keywords

high glucose
12
skeletal muscle
12
fabp3 expression
12
glucose induces
8
fabp3
6
induces fabp3-mediated
4
fabp3-mediated membrane
4
membrane rigidity
4
rigidity downregulation
4
downregulation sirt1
4

Similar Publications

It is helpful for diagnostic purposes to improve our current knowledge of gut development and serum biochemistry in young piglets. This study investigated serum biochemistry, and gut site-specific patterns of short-chain fatty acids (SCFA) and expression of genes related to barrier function, innate immune response, antioxidative status and sensing of fatty and bile acids in suckling and newly weaned piglets. The experiment consisted of two replicate batches with 10 litters each.

View Article and Find Full Text PDF

Introduction: This post hoc analysis of an A Toujeo Observational Study (ATOS) aims to evaluate the real-world effectiveness and safety of insulin glargine 300 U/ml (Gla-300) in high-risk subgroups of insulin-naïve people with type 2 diabetes (PwT2D) from multiple geographical regions (Asia, the Middle East, North Africa, Latin America, and Eastern Europe).

Methods: In these post hoc analyses of ATOS, a real-world, 12-month, prospective study included 4422 insulin-naïve adults (age ≥ 18 years) with type 2 diabetes (T2D) uncontrolled (HbA > 7% and ≤ 11%) on one or more oral antidiabetic drugs (OADs) who initiated Gla-300 treatment as per routine practice. Primary and secondary endpoints were studied according to renal impairment (RI) status (without or with) and age group ( View Article and Find Full Text PDF

Effects of Glucagon-Like Peptide-1 receptor agonists on bone health in people living with obesity.

Osteoporos Int

September 2025

Department of Rheumatology, Univ. Lille, CHU Lille, MABlab ULR 4490, 59000, Lille, France.

Medications like liraglutide 3.0 mg daily (Saxenda®; Novo Nordisk) and semaglutide 2.4 mg weekly (Wegovy®; Novo Nordisk), which are glucagon-like peptide-1 receptor agonists (GLP-1Ra), have been sanctioned for prolonged weight management in people living with obesity (PwO).

View Article and Find Full Text PDF

A thermostable Cas9-based genome editing system for thermophilic acetogenic bacterium .

Appl Environ Microbiol

September 2025

Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, PR China.

is a thermophilic acetogenic bacterium capable of thriving at elevated temperatures up to 66°C. It metabolizes carbohydrates such as glucose, mannose, and fructose and can also grow lithotrophically utilizing hydrogen (H) and carbon dioxide (CO) or carbon monoxide (CO), with acetate serving as its main product. A simple and efficient genome editing system for would not only facilitate the understanding of the physiological function of enzymes involved in energy and carbon metabolism but also enable metabolic engineering.

View Article and Find Full Text PDF

Novel Visceral Obesity Indicators and Associated Metabolic Fingerprint in Incident Diabetic Retinopathy.

Invest Ophthalmol Vis Sci

September 2025

Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology. Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, People's Republic of China.

Purpose: Evidence on the association between visceral obesity and diabetic retinopathy (DR) remains sparse and debatable. We aimed to use three novel indicators, body roundness index (BRI), lipid accumulation product (LAP), and visceral adiposity index (VAI), to investigate the longitudinal relationship between visceral obesity and DR, and explore the potential metabolic mechanisms.

Methods: In this prospective study based on the UK Biobank (UKB), 14,738 individuals with diabetes free of DR at baseline were included.

View Article and Find Full Text PDF