Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Bacterial infections account for a large proportion of zoonoses. Our current understanding of zoonotic spillover, however, is largely based on studies from viral systems. Small mammals such as rodents and their ectoparasites present a unique system for studying several bacterial pathogens and mapping their spillover pathways. Using spp. (a Gram-negative bacteria) as a model system within a rainforest human-use landscape, we investigated (1) ecological correlates of prevalence in small mammal hosts and (2) evolutionary relationships between spp. and various hosts and ectoparasites to gain insight into pathogen movement pathways within ecological communities. We detected in five out of eight small mammal species and in 86 (40.56%) out of 212 individuals, but prevalence varied widely among species (0%-75.8%). Seven of the ten ectoparasite species found on these small mammals were positive for . Interestingly, while genotypes (15) in small mammals were host-specific, ectoparasites had nonspecific associations, suggesting the possibility for vector-mediated cross-species transmission. We also found that prevalence in hosts was positively correlated with their aggregated ectoparasite loads, further emphasizing the crucial role that ectoparasites may play in these transmission pathways. Our cophylogenetic analysis and ancestral trait (host) reconstruction revealed incongruence between small mammal and phylogenies, indicating historic host shifts and validating the potential for contemporary spillover events. We found that small mammal hosts in this fragmented landscape often move across habitat boundaries, creating a transmission pathway (via shared ectoparasites) to novel hosts, which may include synanthropic species like . Our results highlight the necessity to disentangle the complex relationship among hosts, ectoparasites, and bacterial pathogens to understand the implications of undetected spillover events.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11962204 | PMC |
http://dx.doi.org/10.1002/ece3.71085 | DOI Listing |