Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Ferumoxytal-enhanced 5D free-running whole heart CMR provides image quality comparable to CTA, but requires hours-long reconstruction time, preventing clinical usage. This study developed a variable projection augmented Lagrangian (VPAL) method for 5D motion-resolved image reconstruction and compared it with alternating direction method of multipliers (ADMM) in five numerical simulations and 15 in-vivo pediatric data set.

Approach: Relative error of the reconstructed images against the ground-truth images was assessed in numerical simulations. In-vivo analysis compared reconstruction time, mid-short axis (SA) blood-myocardium sharpness, left ventricular ejection fraction (LVEF), and a radiologist's image quality ratings between VPAL and ADMM. A paired t-test (p<0.05) was used to determine statistical significance, while linear regression and Bland-Altman analysis for agreement assessments.

Results: VPAL and ADMM had similar relative errors compared to the ground truth, p = 0.07. In in-vivo datasets, VPAL reduced the reconstruction time from 16.3 +/- 3.6 hours (ADMM) to 4.7 +/- 1.1 hours (VPAL), p=1e-10. Blood-myocardium border sharpness in VPAL closely correlates to ADMM , R^2 = 0.97. The LVEFs values measured by VPAL and ADMM reconstructions are largely similar, 56 +/- 6 % in ADMM and 56 +/- 6 % in VPAL, p=0.55. Both VPAL and ADMM reconstructions have good to excellent diagnostic ratings (VPAL vs. ADMM: 3.9 +/- 0.3 vs. 3.8 +/- 0.4 in 2-chamber; 3.9 +/- 0.4 vs. 3.9 +/- in 4-chamber; 3.7 +/- 0.5 vs. 3.7 +/- 0.5 in mid-SA reformatted views.

Conclusion: VPAL enables faster reconstruction than ADMM while maintaining equivalent image quality for functional assessments, supporting its potential for clinical use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957230PMC

Publication Analysis

Top Keywords

reconstruction time
12
image quality
8
numerical simulations
8
simulations in-vivo
8
vpal novel
4
novel method
4
method reduce
4
reconstruction
4
reduce reconstruction
4
time free-running
4

Similar Publications

A modification of swimmer plot for overviewing the postoperative longitudinal course.

JPRAS Open

December 2025

Department of Plastic and Reconstructive Surgery, Osaka City General Hospital, 2-13-22 Miyakojimahondori Miyakojima-ku, Osaka, Japan.

Background: Long-term follow-up is essential for assessing the efficacy of surgical methods in pediatric patients. However, cohort dropouts tend to increase over time. These losses to follow-up make it difficult to obtain reliable and convincing results.

View Article and Find Full Text PDF

Background: Previous studies indicate that hippocampal (subfield) and amygdala volumes may correlate with specific cognitive functions, coping strategies and emotion regulation. Here, we investigated associations between emotional processing and volumes of hippocampal subfields and amygdala. We focused on depressed patients since emotional dysregulation and hippocampal volume shrinkage are characteristic of them.

View Article and Find Full Text PDF

Advancements and perspectives on organelle-targeted fluorescent probes for super-resolution SIM imaging.

Chem Sci

September 2025

Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University Nanning Guangxi 530004 China

As a cutting-edge super-resolution imaging technique, structured illumination microscopy (SIM) has been widely used in cell biology research, especially in the analysis of subcellular organelles and monitoring of their dynamic processes. Through multiple illumination and reconstruction processes, SIM breaks through the resolution limitations of traditional microscopes and can observe the fine structures within cells in real time with nanoscale resolution. This provides strong technical support for in-depth analyses of molecular mechanisms, organelle functions, signaling networks, and metabolic regulatory pathways within cells.

View Article and Find Full Text PDF

Background: Four-dimensional magnetic resonance imaging (4D-MRI) holds great promise for precise abdominal radiotherapy guidance. However, current 4D-MRI methods are limited by an inherent trade-off between spatial and temporal resolutions, resulting in compromised image quality characterized by low spatial resolution and significant motion artifacts, hindering clinical implementation. Despite recent advancements, existing methods inadequately exploit redundant frame information and struggle to restore structural details from highly undersampled acquisitions.

View Article and Find Full Text PDF

Understanding gastric physiology in rodents is critical for advancing preclinical neurogastroenterology research. However, existing techniques are often invasive, terminal, or limited in resolution. This study aims to develop a non-invasive, standardized MRI protocol capable of capturing whole-stomach dynamics in anesthetized rats with high spatiotemporal resolution.

View Article and Find Full Text PDF