A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@material+biocatalyst&datetype=edat&usehistory=y&retmax=5&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Construction of an efficient enzyme-cell@material biocatalyst through the biofilm immobilization of Komagataella phaffii for continuous biocatalysis. | LitMetric

Construction of an efficient enzyme-cell@material biocatalyst through the biofilm immobilization of Komagataella phaffii for continuous biocatalysis.

Bioresour Technol

College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The ever-growing demand for cost-effective and green biocatalytic transformations has prompted the rational design and development of robust biocatalytic tools. However, transformations are hindered by limited continuous process and enzymatic instability. Here, 10 Flo family related genes in Komagataella phaffii were systematically evaluated to assess their adhesive properties. For the first time, we identified the KpFlo11C domain of BSC1p as facilitating cell aggregation on carriers, thereby enhancing the biofilm immobilization process. Furthermore, an engineered K. phaffii strain, fixing β-galactosidase on the cell surface, was constructed by optimizing the signal peptide and gene dosage, for enhancing the efficiency of enzyme targeting and anchoring, as well as the proportion of cells displaying the enzyme. Finally, the KpFlo11C domain was overexpressed in this K. phaffii cell display system to construct the enzyme-cell@material biocatalyst, which exhibited robust continuous production of galacto-oligosaccharides (GOS) at a rate of 8.16 g/L/h in a 6-L fermenter. The development of this enzyme-cell@material biocatalyst, which offers a highly efficient, stable, low-cost, and simplified biocatalytic process, provides a direction for the application of other yeasts in large-scale industrial continuous production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2025.132460DOI Listing

Publication Analysis

Top Keywords

enzyme-cell@material biocatalyst
12
biofilm immobilization
8
komagataella phaffii
8
kpflo11c domain
8
continuous production
8
construction efficient
4
efficient enzyme-cell@material
4
biocatalyst biofilm
4
immobilization komagataella
4
phaffii
4

Similar Publications