Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Introduction: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with a poor prognosis. Kinase proteins are essential regulators of cellular processes and potential targets for drug development.
Methods: Integration of multiple microarray datasets was screened to find differentially expressed kinases (DE-Kinases) across adjacent normal and tumor tissue samples in PDAC. The most effective kinase for drug design and docking in this study was selected by investigating biological mechanisms and survival analyses. Forty phytochemicals were extracted from the yellow sweet clover, (Linn.) Pall, and were then subjected to in silico screening and molecular docking studies against a specific potent kinase.
Results: MET, PAK3, and PDK4 were identified as the DE-Kinases. After examining the pathways and biological processes, up-regulated MET had the most significant survival analysis and became our primary kinase for drug design and docking in this study. Four of the extracted phytocompounds of (Linn.) Pall that exhibited high binding affinities with MET and were selected for toxicity analysis. Finally, the stability and mobility of the two nontoxic compounds that passed the toxicity test (dicumarol PubChem CID: 54676038 and melilotigenin PubChem CID: 14059499) were studied by molecular dynamics simulation.
Conclusion: This study's results identified two phytochemicals in yellow sweet clover that could be used to develop an anticancer drug, but experimental evaluation is necessary to confirm their efficacy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954745 | PMC |
http://dx.doi.org/10.34172/bi.30187 | DOI Listing |