Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Land surface temperature (LST) is a critical parameter for land surface and atmospheric interactions. However, the applicability of current LST estimates for field-level hydrological, agricultural, and ecological operations is challenging due to their coarse spatiotemporal resolution. In the current article, we compared three different models, namely 1) Thermal Sharpening (TsHARP), 2) Thin Plate Spline (TPS), and 3) Random Forest (RF) for downscaling LST from 100 to 10 m by using high-resolution Sentinel-1,2 optical-microwave data. TsHARP, TPS, and RF are commonly used methods for improving the spatial resolution of large-scale environmental or climate data to finer scales for field-level applications. The analysis was performed at agricultural farms in the semi-arid, arid, and per-humid regions of India during the winter and summer seasons of 2020-21 and 2021-22. The calibration accuracy of the RF model was in better agreement with the coefficient of determination (R), root mean square error (RMSE), and normalized RMSE (nRMSE) values ranging between 0.961-0.997, 0.103-0.439 K, and 0.034-0.143%, respectively, and lower values of standard errors for all three locations. Though the validation accuracy of models varied between the regions, RF and TPS consistently outperformed the TsHARP model. Further the impact of individual features on LST downscaling was analyzed using Accumulated Local Effects (ALE) plot. The study concluded that RF is an effective and adaptable strategy that can be used in various agroclimatic zones and land cover types, suggesting its broader applicability in agricultural and ecological operations. Finer resolution LST data with enhanced precision can support tailored field-level decision-making and interventions in agriculture and environmental monitoring.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11953476 | PMC |
http://dx.doi.org/10.1038/s41598-025-92135-0 | DOI Listing |