98%
921
2 minutes
20
Episodic memory enables the encoding and retrieval of novel associations, as well as the bridging across learned associations to draw novel inferences. A fundamental goal of memory science is to understand the factors that give rise to individual and age-related differences in memory-dependent cognition. Variability in episodic memory could arise, in part, from both individual differences in sustained attention and diminished attention in aging. We first report that, relative to young adults (N = 23; M = 20.0 years), older adults (N = 26, M = 68.7 years) demonstrated lower associative memory and memory-guided associative inference performance and that this age-related reduction in associative inference occurs even when controlling for associative memory performance. Next, we confirm these age-related memory differences by using a high-powered, online replication study (young adults: N = 143, M = 26.2 years; older adults N = 133, M = 67.7 years), further demonstrating that age-related differences in memory do not reflect group differences in sustained attention (as assayed by the gradual-onset continuous performance task; gradCPT). Finally, we report that individual differences in sustained attention explain between-person variability in associative memory and inference performance in the present, online young adult sample, but not in the older adult sample. These findings extend understanding of the links between attention and memory in young adults, demonstrating that differences in sustained attention was related to differences in memory-guided inference. By contrast, our data suggest that the present age-related differences in memory-dependent behavior and the memory differences between older adults are due to attention-independent mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3758/s13415-025-01292-2 | DOI Listing |
J Fluoresc
September 2025
Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, 81441, Ha'il, Saudi Arabia.
This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.
View Article and Find Full Text PDFFEMS Yeast Res
September 2025
Department of Bioengineering, School of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran.
The growing challenges posed by global warming and the demand for sustainable food and feed resources underscore the need for robust microbial platforms in bioprocessing. Thermotolerant yeasts have emerged as promising candidates due to their ability to thrive at elevated temperatures and other industrially relevant stresses. This review examines the industrial potential of thermotolerant yeasts in the context of climate change, emphasizing how their resilience can lead to more energy-efficient and cost-effective bioprocesses.
View Article and Find Full Text PDFSleep
September 2025
Center for Sleep Medicine, Hospices Civils de Lyon, Lyon 1 University, Lyon, F-69000, France.
Current treatments for narcolepsy type 1 (NT1) have little impact on psychiatric, cognitive and metabolic comorbidities. Here, we evaluated the feasibility, safety and efficacy of a prospective Exercise Training (ET) program on sleep-related symptoms and comorbidities in NT1. Sedentary adult with NT1 participated in a 6-week supervised ET program followed by a 18-week self-directed program.
View Article and Find Full Text PDFSmall
September 2025
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China.
In recent years, light-controlled ion transport systems have attracted widespread attention, however, the use of photoresponsive materials suffers from rapid carrier recombination, thermal field limitations, and narrow spectral response, which significantly restricts their performance enhancement in osmotic energy conversion. This study innovatively couples "blue energy" (osmotic energy) with "green energy" (solar energy), assembling graphene oxide/molybdenum disulfide/sulfonated cellulose nanocrystal (GO/ MoS/CNC) ion-channel membranes. Under solar irradiation, the energy level difference between MoS and GO effectively suppresses the recombination of photogenerated carriers, generating more active electrons and significantly enhancing the carrier density, thereby improving the current flux and ion selectivity.
View Article and Find Full Text PDFChemSusChem
September 2025
Department of Electrosynthesis, Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany.
Electrochemical dehydration reaction is a fascinating and underexplored field of research, which has started to attract significant attention in recent years. Dehydration reactions are characterized by the formal removal of water in the course of the transformation, and they are among the most fundamental types of reactions found throughout chemistry. Examples are esterification reactions, amidation reactions, and the synthesis of carbon-heteroatom multiple bonds.
View Article and Find Full Text PDF