A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Model-Supported dissolution methods for Modified-Release Products: Enteric-coated versus extended-release ketoprofen tablets. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Drug product development is often a challenging endeavor. However, model-supported dissolution test design trained by appropriate in silico models can lead to considerable reduction in the riskoffailure. Dissolution models have revealed that dissolution of poorly soluble ionizable pharmaceutical particles is slower in biorelevant bicarbonate than compendial buffers. The reason is bicarbonate's lowered effective pK (pk), as a consequence of comparable reaction and diffusional times during dissolution. This is not necessarily the case when the drug is formulated as a controlled-release dosage form. In this paper, we explored the differences in dissolution between enteric coated (EC) and extended release (XR) ketoprofen formulations. In vitro dissolution was studied in low molarity buffers to mimic the lowered intestinal bicarbonate pk, while their biorelevance was confirmed through in vivo comparative bioavailability studies. Both dissolution in low molarity phosphate and in vivo absorption profiles of EC tablets were sensitive to their coating polymer material. Similarly, XR in vitro dissolution in low molarity media showed discrepancies between formulations, caused by dibasic calcium phosphate in one formulation. Conversely, those in vitro differences were not relevant after the in vivo testing. Mechanistic insights from mass/charge balance modelling suggested that slower diffusional times and small liquid-to-solid ratio in XR dosage forms allow bicarbonate reactions to reach their equilibrium. This results in an enhanced buffer capacity, which was not matched by in vitro low molarity media. Therefore, improvement in biopredictivity of XR dosage forms can be achieved by performing dissolution experiments at high rather than low buffer molarities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2025.125524DOI Listing

Publication Analysis

Top Keywords

low molarity
16
dissolution
9
model-supported dissolution
8
diffusional times
8
vitro dissolution
8
dissolution low
8
molarity media
8
dosage forms
8
low
5
dissolution methods
4

Similar Publications