Supramolecular assemblies constructed from muscovite nanosheets and cellulose nanofibrils: Enhancing mechanical energy dissipation of polymers.

Int J Biol Macromol

School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, PR China. Electronic address:

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To further improve the lubrication ability of flexible polyvinyl alcohol (PVA) composite films under dry friction and make it be used to encapsulate and protect irregularly shaped equipment. Herein, the friction and adhesion of nanocellulose (NC) and sodium carboxymethylcellulose (CMC) on the surface of muscovite (Mica) were used to achieve in-situ exfoliation of large-size Mica nanosheets. The construction of NC/CMC/Mica supramolecular assembly systems was formed via complex intermolecular hydrogen bonds and electrostatic attraction. The PVA composites modified with NC/CMC/Mica exhibited excellent thermal stability, mechanical strength, superior flexibility, and self-lubricating properties. The supramolecular architecture of rigid Mica nanosheets and flexible NC framework enhances the comprehensive performance of polymers to achieve stronger intermolecular cross-linking. Thus, the entanglement of nanofibrils, hydrogen bonding interaction between NC/CMC/Mica, and the chemical reaction between NC and PVA molecular chains under the crosslinking of epichlorohydrin give the NCMP films excellent tensile strength (188.15 MPa), toughness (82.08 MJ/m), and self-lubricating ability. The mechanical and self-lubricating properties of composite films were described from the level of macro-phenomena to micro-mechanisms, thus proposing the self-enhancement and lubrication mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.142573DOI Listing

Publication Analysis

Top Keywords

composite films
8
mica nanosheets
8
self-lubricating properties
8
supramolecular assemblies
4
assemblies constructed
4
constructed muscovite
4
muscovite nanosheets
4
nanosheets cellulose
4
cellulose nanofibrils
4
nanofibrils enhancing
4

Similar Publications

In the modern era, polymyrcene, a sustainable polymer made from renewable resources, offers a potential path towards the advancement of green products. Here, we successfully created and characterized the first-ever all-bio-based composite films using cellulose nanocrystals (CNCs) made from agricultural waste, polylactic acid (PLA), and polymyrcene. Environmentally acceptable substitutes for traditional polymer composites have been made possible by incorporating CNCs into the PLA-Polymyrcene matrix, which produced materials with improved structural and functional qualities.

View Article and Find Full Text PDF

New horizons in synthesis, functionalization, and deposition of advanced materials using multifunctional organic alkalizers.

Adv Colloid Interface Sci

September 2025

Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton L8S 4L8, Ontario, Canada; School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton L8S 4L8, Ontario, Canada. Electronic address:

This review describes new strategies in the use of multifunctional organic alkalizers (OA) for the fabrication of advanced functional materials. OA facilitate solubilization and delivery of poorly solubilized drugs through the formation of drug-OA complexes and supramolecular gels. OA are applied for the synthesis of materials for biomedical, energy storage, catalytic, photovoltaic, sensor, and electronic applications.

View Article and Find Full Text PDF

Ordered alkene-alkyne alternating conjugation in polyimides: A dual-strategy approach to ultralow dielectric constant and high thermal conductivity.

J Colloid Interface Sci

September 2025

State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China. Electronic address:

Polyimide (PI) faces significant challenges in highly integrated and high-frequency electronic devices due to its inherently low thermal conductivity and relatively high dielectric constant (D). In this study, topologically micro-crosslinked PI films were synthesized by incorporating highly conjugated multi-amino polydiacetylene (MAPDA) into a fluorinated PI matrix. The unique alkene-alkyne alternating conjugated structure of MAPDA, combined with the strong electron-withdrawing trifluoromethyl groups in the matrix, promotes charge redistribution and reduces the dipole moment and polarizability.

View Article and Find Full Text PDF

Ultra-High Zinc Utilization Enabled by MXene Anode for Flexible Dual-Plating Zn-Br Microbatteries.

J Phys Chem Lett

September 2025

College of Materials Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, P. R. China.

Aqueous zinc-ion microbatteries exhibit promising prospects for wearable devices due to their high safety and cost-effectiveness but face challenges such as low energy density and short cycle life. To address these challenges, a dual-plating flexible Zn-Br microbattery was developed using freestanding MXene films as a zinc metal free anode. The MXene anode retains no redundant Zn, as Zn from the electrolyte undergoes deposition/stripping reactions on its substrate, thereby eliminating the necessity for excess zinc.

View Article and Find Full Text PDF

Optimal cerium microalloying enhances SASS/Q235 weld corrosion and antibacterial performance.

iScience

September 2025

State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.

Super austenitic stainless steels (SASS) face challenges like galvanic corrosion and antibacterial performance when welded to carbon steel (Q235) in marine environments. This study demonstrates that adding 1.0 wt% cerium (Ce) to SASS refines the heat-affected zone (HAZ) grain structure (from 7 μm to 2 μm), suppresses detrimental σ-phase precipitation, and forms a dense oxide film.

View Article and Find Full Text PDF