Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This perspective explores various quantum models of consciousness from the viewpoint of quantum information science, offering potential ideas and insights. The models under consideration can be categorized into three distinct groups based on the level at which quantum mechanics might operate within the brain: those suggesting that consciousness arises from electron delocalization within microtubules inside neurons, those proposing it emerges from the electromagnetic field surrounding the entire neural network, and those positing it originates from the interactions between individual neurons governed by neurotransmitter molecules. Our focus is particularly on the Posner model of cognition, for which we provide preliminary calculations on the preservation of entanglement of phosphate molecules within the geometric structure of Posner clusters. These findings provide valuable insights into how quantum information theory can enhance our understanding of brain functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941443PMC
http://dx.doi.org/10.3390/e27030243DOI Listing

Publication Analysis

Top Keywords

quantum models
8
models consciousness
8
quantum science
8
quantum
6
consciousness quantum
4
science perspective
4
perspective perspective
4
perspective explores
4
explores quantum
4
consciousness viewpoint
4

Similar Publications

The calculation of the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap for chemical molecules is computationally intensive using quantum mechanics (QM) methods, while experimental determination is often costly and time-consuming. Machine Learning (ML) offers a cost-effective and rapid alternative, enabling efficient predictions of HOMO-LUMO gap values across large data sets without the need for extensive QM computations or experiments. ML models facilitate the screening of diverse molecules, providing valuable insights into complex chemical spaces and integrating seamlessly into high-throughput workflows to prioritize candidates for experimental validation.

View Article and Find Full Text PDF

In this work, the superbase-mediated self-organization of tetrasubstituted pyrroles from three molecules of acetylenes and one molecule of nitriles was theoretically investigated. On the example of interaction of phenylacetylene with benzonitrile in the KOBu/DMSO medium, three possible pathways of the assembly of 2-benzyl-3,5-diphenyl-4-phenylethynyl-1-pyrrole have been studied using a combined B2PLYP-D3/6-311+G**//B3LYP-D3/6-31+G* quantum chemical approach. The calculated activation barriers correspond to mild reaction conditions (room temperature for 15 min).

View Article and Find Full Text PDF

Hamiltonian Grid-Based QM/MM Method with Mean-Field Embedding for Simulating Arbitrary Slab Geometries.

J Chem Theory Comput

September 2025

Materials DX Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.

The quantum mechanics/molecular mechanics (QM/MM) method is a powerful approach for investigating solid surfaces in contact with various types of media, since it allows for flexible modeling of complex interfaces while maintaining an all-atom representation. The mean-field QM/MM method is an average reaction field model within the QM/MM framework. The method addresses the challenges associated with the statistical sampling of interfacial atomic configurations of a medium and enables efficient calculation of free energies.

View Article and Find Full Text PDF

Exponential Quantum Speedup for Simulating Classical Lattice Dynamics.

Phys Rev Lett

August 2025

The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

Simulating large-scale lattice dynamics remains a long-standing challenge in condensed matter and materials science, where mechanical and thermal behaviors arise from coupled vibrational modes. We introduce a quantum algorithm that reformulates general harmonic lattice dynamics as a time-dependent Schrödinger equation governed by a sparse, Hermitian Hamiltonian. This enables the use of Hamiltonian simulation techniques on quantum devices, offering exponential speedup in the number of atoms N.

View Article and Find Full Text PDF

Magnon-phonon hybridization in ordered materials is a crucial phenomenon with significant implications for spintronics, magnonics, and quantum materials research. We present direct experimental evidence and theoretical insights into magnon-phonon coupling in Mn_{3}Ge, a kagome antiferromagnet with noncollinear spin order. Using inelastic x-ray scattering and ab initio modeling, we uncover strong hybridization between planar spin fluctuations and transverse optical phonons, resulting in a large hybridization gap of ∼2  meV.

View Article and Find Full Text PDF