Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: Network is unreachable
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Viral metagenomics has expanded significantly in recent years due to advancements in next-generation sequencing, establishing it as the leading method for identifying emerging viruses. A crucial step in metagenomics is taxonomic classification, where sequence data is assigned to specific taxa, thereby enabling the characterization of species composition within a sample. Various taxonomic classifiers have been developed in recent years, each employing distinct classification approaches that produce varying results and abundance profiles, even when analyzing the same sample.
Methods: In this study, we propose using the identification of Torque Teno Viruses (TTVs), from the Anelloviridae family, as indicators to evaluate the performance of four short-read-based metagenomic classifiers: Kraken2, Kaiju, CLARK and DIAMOND, when evaluating human plasma samples.
Results: Our results show that each classifier assigns TTV species at different abundance levels, potentially influencing the interpretation of diversity within samples. Specifically, nucleotide-based classifiers tend to detect a broader range of TTV species, indicating higher sensitivity, while amino acid-based classifiers like DIAMOND and CLARK display lower abundance indices. Interestingly, despite employing different algorithms and data types (protein-based vs. nucleotide-based), Kaiju and Kraken2 performed similarly.
Conclusion: Our study underscores the critical impact of classifier selection on diversity indices in metagenomic analyses. Kaiju effectively assigned a wide variety of TTV species, demonstrating it did not require a high volume of reads to capture diversity. Nucleotide-based classifiers like CLARK and Kraken2 showed superior sensitivity, which is valuable for detecting emerging or rare viruses. At the same time, protein-based approaches such as DIAMOND and Kaiju proved robust for identifying known species with low variability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11951539 | PMC |
http://dx.doi.org/10.1186/s12985-025-02708-8 | DOI Listing |