Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Type 2 diabetes is a prevalent metabolic disorder with serious health consequences, necessitating both enhanced diagnostic methodologies and comprehensive elucidation of its pathophysiological mechanisms. We compared fecal microbiome and urine metabolome profiles in type 2 diabetes patients versus healthy controls to evaluate their respective diagnostic potential. Using a cohort of 94 subjects (48 diabetics, 46 controls), this study employed 16S rRNA amplicon sequencing for fecal microbiome analysis and GC-MS for urinary metabolomics. While fecal microbiome alpha diversity showed no significant differences between groups, urinary metabolomics demonstrated distinct structural patterns and higher evenness in type 2 diabetes patients. The study identified several diabetes-associated urinary metabolites, including elevated levels of glucose and inositol, along with decreased levels of 6 urine metabolites including glycolic acid, hippurate, and 2-aminoethanol. In the fecal microbiome, genera such as - showed positive correlation with type 2 diabetes, while demonstrated negative correlation. Receiver operating characteristic curve analyses revealed that urinary metabolites exhibited superior diagnostic potential compared to fecal microbiome features, with an area under the curve of 0.90 for the combined metabolite model versus 0.82 for the integrated bacterial taxa model. These findings suggest that urinary metabolomics may offer a more reliable approach for type 2 diabetes diagnosis compared to fecal 16S metabarcoding, while highlighting the potential of multi-marker panels for enhanced diagnostic accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11985407 | PMC |
http://dx.doi.org/10.4014/jmb.2411.11071 | DOI Listing |