Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: Traditional directed evolution is limited by labor-intensive iterative steps and low-throughput selection and screening. To address these challenges, we developed a growth-coupled continuous directed evolution (GCCDE) approach, enabling automated and efficient enzyme engineering. By linking enzyme activity to bacterial growth and utilizing the MutaT7 system, GCCDE combines mutagenesis and high-throughput selection of superior enzyme variants in a single process. To validate this approach, we evolved the thermostable enzyme CelB from to enhance its β-galactosidase activity at lower temperatures while maintaining thermal stability. CelB activity was coupled to the growth of , allowing variants with improved activity to utilize lactose more efficiently and promote faster growth in a minimal medium. Using a continuous culture system, we achieved automated high-throughput mutagenesis and simultaneous real-time selection of over 10⁹ variants per culture. Integrating and mutagenesis further increased genetic diversity, yielding CelB variants with significantly enhanced low-temperature activity compared to the wild type while preserving thermostability. DNA sequencing identified key mutations likely responsible for improved substrate binding and catalytic turnover. This GCCDE approach is broadly applicable for optimizing diverse enzymes, demonstrating the potential of automated continuous evolution for industrial and research applications.

Importance: Enzyme engineering aims to develop enzymes with improved or novel traits, but traditional methods are slow and require repetitive manual steps. This study presents a faster, automated protein engineering approach. We utilized an mutagenesis technique, MutaT7 tools, to induce mutations in living bacteria and established a direct link between enzyme activity and bacterial growth. A continuous culture setup enables automated mutagenesis and growth-coupled selection of better-performing variants in real time. Bacteria with improved enzymes grew faster, selecting superior variants without manual intervention. Using this method, we engineered CelB with better performance at lower temperatures while maintaining thermal stability. By combining high-throughput mutagenesis and selection in a single process, this system bypasses iterative cycles of error-prone PCR, transformation, and screening. Our approach is adaptable to various enzymes, providing a faster and more efficient solution for enzyme engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12016552PMC
http://dx.doi.org/10.1128/aem.02491-24DOI Listing

Publication Analysis

Top Keywords

enzyme engineering
16
directed evolution
12
growth-coupled continuous
8
continuous directed
8
enzyme
8
gccde approach
8
enzyme activity
8
activity bacterial
8
bacterial growth
8
single process
8

Similar Publications

Drought stress is the most vulnerable abiotic factor affecting plant growth and yield. The use of silicic acid as seed priming treatment is emerging as an effective approach to regulate maize plants susceptibility to water stress. The study was formulated for investigating the effect of silicic acid seed priming treatment in modulating the oxidative defense and key physio-biochemical attributes of maize plants under drought stress conditions.

View Article and Find Full Text PDF

The mitogen-activated protein kinase (MAPK) pathway-also known as the RAS/RAF/MEK/ERK pathway-is a critical signalling cascade involved in regulating cell growth, proliferation, and survival. First discovered in the early 1980s, the pathway's extracellular signal-regulated kinase (ERK) subfamily was identified in the 1990s. The ERK family includes several isoforms-ERK1, ERK2, ERK3, ERK5, and ERK6-with ERK1 (MAPK3) and ERK2 (MAPK1) being the most well-characterised and playing central roles in MAPK signalling.

View Article and Find Full Text PDF

This study investigated the effects of a low-frequency polarized electric field (LFPEF) on postharvest disease resistance and storage quality of grapes. LFPEF treatment (3 h/d) significantly reduced weight loss, suppressed lesion expansion, and maintained fruit firmness by reinforcing cell wall integrity and enhancing defense-related enzyme activities. Mechanistic analyses indicated that LFPEF activated Ca signaling, promoted calcium accumulation, and upregulated calcium sensor genes, thereby contributing to membrane stabilization.

View Article and Find Full Text PDF

Modifying cells to achieve desired functions has attracted extensive attention in bioengineering and bio-manufacturing. Approaches based on cell-surface engineering have the potential to endow cells with multiple functions and also create a protective shell around them. However, such shells are generally irreversible and lack functionality, leading to various drawbacks associated with irreversible dynamics.

View Article and Find Full Text PDF

Multilayered Sandwich Structure Sensor: Confinement-Mediated HO Enrichment Strategy for Ultrasensitive and Long-term Stable Prostate Cancer Biomarker Detection.

Small

September 2025

School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of AI-Driven Zero-Carbon Technologies, Key Laboratory of New Low-carbon Green Chemical Technology Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, 530004, China.

Sarcosine (Sar), a critical potential biomarker for prostate cancer (PCa), is primarily detected via enzyme cascade reactions involving sarcosine oxidase (SOx) and peroxidase. Nevertheless, the intermediate product hydrogen peroxide (HO) tends to diffuse to the bulk solution phase without entering subsequent reaction, leading to suboptimal detection sensitivity and compromised analytical performance. To tackle this challenge, a multilayered sandwich nanozyme cascade sensor (designated as Cu-MOF/Rf@BDC) is proposed through a confinement-mediated HO enrichment strategy.

View Article and Find Full Text PDF