A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Understanding Reasons for Oral Anticoagulation Nonprescription in Atrial Fibrillation Using Large Language Models. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Rates of oral anticoagulation (OAC) nonprescription in atrial fibrillation approach 50%. Understanding reasons for OAC nonprescription may reduce gaps in guideline-recommended care. We aimed to identify reasons for OAC nonprescription from clinical notes using large language models.

Methods: We identified all patients and associated clinical notes in our health care system with a clinician-billed visit for atrial fibrillation without another indication for OAC and stratified them on the basis of active OAC prescriptions. Three annotators labeled reasons for OAC nonprescription in clinical notes on 10% of all patients ("annotation set"). We engineered prompts for a generative large language model (Generative Pre-trained Transformer 4) and trained a discriminative large language model (ClinicalBERT) to identify reasons for OAC nonprescription and selected the best-performing model to predict reasons for the remaining 90% of patients ("inference set").

Results: A total of 35 737 patients were identified, of which 7712 (21.6%) did not have active OAC prescriptions. A total of 910 notes across 771 patients were annotated. Generative Pre-trained Transformer 4 outperformed ClinicalBERT (macro-F1 score across all reasons of 0.79, compared with 0.69 for ClinicalBERT). Using Generative Pre-trained Transformer 4 on the inference set, 61.1% of notes had documented reasons for OAC nonprescription, most commonly the alternative use of an antiplatelet agent (23.3%), therapeutic inertia (21.0%), and low burden of atrial fibrillation (17.1%).

Conclusions: This is the first study using large language models to extract documented reasons for OAC nonprescription from clinical notes in patients with atrial fibrillation and reveals guideline-discordant practices and actionable insights for the development of health system interventions to reduce OAC nonprescription.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12132827PMC
http://dx.doi.org/10.1161/JAHA.124.040419DOI Listing

Publication Analysis

Top Keywords

oac nonprescription
32
reasons oac
24
atrial fibrillation
20
large language
20
clinical notes
16
nonprescription clinical
12
generative pre-trained
12
pre-trained transformer
12
oac
11
nonprescription
9

Similar Publications