Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
To compare the image quality of chest radiography with a dual-energy X-ray imaging system using AI technology (DE-AI) to that of conventional chest radiography with a standard protocol. In this prospective study, 52 healthy volunteers underwent dual-energy chest radiography. Images were obtained using two exposures at 60 kVp and 120 kVp, separated by a 150 ms interval. Four images were generated for each participant: a conventional image, an enhanced standard image, a soft-tissue-selective image, and a bone-selective image. A machine learning model optimized the cancellation parameters for generating soft-tissue and bone-selective images. To enhance image quality, motion artifacts were minimized using Laplacian pyramid diffeomorphic registration, while a wavelet directional cycle-consistent adversarial network (WavCycleGAN) reduced image noise. Four radiologists independently evaluated the visibility of thirteen anatomical regions (eight soft-tissue regions and five bone regions) and the overall image with a five-point scale of preference. Pooled mean values were calculated for each anatomic region through meta-analysis using a random-effects model. Radiologists preferred DE-AI images to conventional chest radiographs in various anatomic regions. The enhanced standard image showed superior quality in 9 of 13 anatomic regions. Preference for the soft-tissue-selective image was statistically significant for three of eight anatomic regions. Preference for the bone-selective image was statistically significant for four of five anatomic regions. Images produced by DE-AI provide better visualization of thoracic structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11942644 | PMC |
http://dx.doi.org/10.3390/jcm14062091 | DOI Listing |