Bacterial Adhesion on Soft Surfaces: The Dual Role of Substrate Stiffness and Bacterial Growth Stage.

Microorganisms

Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, 162 A, Avenue de la Faïencerie, 1511 Luxembourg, Luxembourg.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The surface adhesion and stiffness of underlying substrates mediate the geometry, mechanics, and self-organization of expanding bacterial colonies. Recent studies have qualitatively indicted that stiffness may impact bacterial attachment and accumulation, yet the variation in the cell-to-surface adhesion with substrate stiffness remains to be quantified. Here, by developing a cell-level force-distance spectroscopy (FDS) technique based on atomic force microscopy (AFM), we simultaneously quantify the cell-surface adhesion and stiffness of the underlying substrates to reveal the stiffness-dependent adhesion of the phototrophic bacterium . As the stiffness of the soft substrate, modeled using a low-melting-point (LMP) agarose pad, was varied between 20 kPa and 120 kPa by changing the agarose concentrations, we observed a progressive increase in the mean adhesion force by over an order of magnitude, from 0.21±0.10 nN to 2.42±1.16 nN. In contrast, passive polystyrene (PS) microparticles of comparable dimensions showed no perceptible change in their surface adhesion, confirming that the stiffness-dependent adhesive interaction of is of a biological origin. Furthermore, for , the cell-surface adhesion varied between 0.29±0.17 nN and 0.39±0.20 nN, showing a weak dependence on the substrate stiffness, thus suggesting that stiffness-modulated adhesion is a species-specific trait. Finally, by quantifying the adhesion of the population across different timescales, we reported the emergent co-existence of weak and strongly adherent sub-populations, demonstrating diversification of the adherent phenotypes over the growth stages. Taken together, these findings suggest that bacteria, depending on the species and their physiological stage, may actively modulate cell-to-surface adhesion in response to the stiffness of soft surfaces. While the surface properties, for instance, hydrophobicity (or hydrophilicity), play a key role in mediating bacterial attachment, this work introduces substrate stiffness as a biophysical parameter that could reinforce or suppress effective surface interactions. Our results suggest how bacteria could leverage stiffness-dependent adhesion and the diversity therein as functional traits to modulate their initial attachment to, colonization of, and proliferation on soft substrates during the early stages of biofilm development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945209PMC
http://dx.doi.org/10.3390/microorganisms13030637DOI Listing

Publication Analysis

Top Keywords

substrate stiffness
16
adhesion
11
stiffness
9
soft surfaces
8
surface adhesion
8
adhesion stiffness
8
stiffness underlying
8
underlying substrates
8
bacterial attachment
8
cell-to-surface adhesion
8

Similar Publications

Embryonic stem cells (ESCs), which are susceptible to DNA damage, depend on a robust and highly efficient DNA damage response (DDR) mechanism for their survival. However, the implications of physical force-mediated DNA damage on ESC fate remain unclear. We show that stiffness-dependent spreading of mouse ESCs (mESCs) induces DNA damage through nuclear compression, with DNA damage causing differentiation through Lamin A/C.

View Article and Find Full Text PDF

New insights to B cell tolerance involving the mechanosensitive ion channel Piezo1.

BMB Rep

September 2025

Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Institute for Immunology and Immunological Diseases, Yonsei Uni

B cell tolerance is critical for preventing autoimmunity, yet the mechanisms by which B cells discriminate self from non-self antigens remain incompletely understood. While early findings emphasize the role of classical antigen-mediated BCR signaling strength by varying antigen formats, emerging evidence highlights the importance of mechanical cues during antigen recognition. This review explores how mechanosensitive ion channels, particularly Piezo1, contribute to B cell activation and tolerance by integrating physical forces at the immune synapse.

View Article and Find Full Text PDF

Senescent cell accumulation has been implicated in aging and fibrotic disease, which are both characterized by increased tissue stiffness. However, the direct connection between tissue mechanics and senescence induction remains disputed in the literature. Thus, this work investigates the influence of hydrogel stiffness and viscoelasticity in promoting fibroblast senescence both in combination with genotoxic stress and independently.

View Article and Find Full Text PDF

Mechanotransduction plays a pivotal role in shaping cellular behavior including migration, differentiation, and proliferation. To investigate this mechanism more accurately further, this study came up with a novel elastomeric substrate with a stiffness gradient using a sugar-based replica molding technique combined with a two-layer PDMS system. The efficient water solubility of candy allows easy release, creating a smooth substrate.

View Article and Find Full Text PDF

The initiation of endometriotic lesions is not well understood or characterized because endometriosis is typically diagnosed at an advanced stage. Endometriotic lesions are most often found on pelvic tissues and organs, especially the ovaries. To investigate the role of tissue tropism on ovarian endometrioma initiation, we adapted a well-characterized polyacrylamide microarray system to investigate the role of tissue-specific extracellular matrix and adhesion motifs on endometriotic cell attachment, morphology, and size.

View Article and Find Full Text PDF