Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Small extracellular vesicles (sEVs), which carry lipids, proteins and RNAs from their parent cells, serve as biomarkers for specific cell types and biological states. These vesicles, including exosomes and microvesicles, facilitate intercellular communication by transferring cellular components between cells. Current methods, such as ultracentrifugation and Tim-4 affinity method, yield high-purity sEVs. However, despite their small size, purified sEVs remain heterogeneous due to their varied intracellular origins. In this technical note, we used high-speed atomic force microscopy (HS-AFM) in conjunction with exosome markers (IgG and IgG) to explore the intracellular origins of sEVs at single-sEV resolution. Our results first revealed the nanotopology of HEK293T-derived sEVs under physiological conditions. Larger sEVs (diameter > 100 nm) exhibited greater height fluctuations compared to smaller sEVs (diameter ≤ 100 nm). Next, we found that mouse-origin IgG, and rabbit-origin IgG and IgG, exhibited the iconic 'Y' conformation, and similar structural dynamics properties. Last, exosome marker antibodies predominantly co-localised with sEV but not with sEV, demonstrating the CD63-CD81-enriched sEV and CD63-CD81-depleted sEV subpopulations. In summary, we demonstrate that nanoscopic profiling of surface exosome markers on sEVs using HS-AFM is feasible for characterising distinct sEV subpopulations in a heterogeneous sEV mixture.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943829 | PMC |
http://dx.doi.org/10.1002/jev2.70050 | DOI Listing |