A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Battle Royale Optimization for Optimal Band Selection in Predicting Soil Nutrients Using Visible and Near-Infrared Reflectance Spectroscopy and PLSR Algorithm. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

An attempt was made to quantify soil properties using hyperspectral remote-sensing techniques and machine-learning algorithms. In total, 100 soil samples representing various locations and soil-nutrient statuses were collected, and the samples were analyzed for soil pH, EC, soil organic carbon, available nitrogen (AN), available phosphorus (AP), and available potassium (AK) by following standard methods. Soil had a wide range of properties, i.e., pH varied from 5.62 to 8.49, EC varied from 0.08 to 1.78 dS/m, soil organic carbon varied from 0.23 to 0.94%, available nitrogen varied from 154 to 344 kg/ha, available phosphorus varied from 9.5 to 25.5 kg/ha, and available potassium varied from 131 to 747 kg/ha. The same set of soil samples were subjected to spectral reflectance measurement using SVC GER 1500 Spectroradiometer (spectral range: 350 to 1050 nm). The measured spectral signatures of various soils were organized for developing a spectral library and for deriving various spectral indices to correlate with soil properties to quantify the nutrients. The soil samples were partitioned into 60:40 ratios for training and validation, respectively. In order to select optimum bands (wavelength) from the soil spectra, we have employed metaheuristic algorithms i.e., Particle Swarm Optimization (PSO), Moth-Flame optimization (MFO), Flower Pollination Optimization (FPO), and Battle Royale Optimization (BRO) algorithm. Further partial least square regression (PLSR) was used to find the latent variable and to evaluate various algorithms for their performance in predicting soil properties. The results indicated that nutrients could be quantified from spectral reflectance measurement with fair to good accuracy through the Battle Royale Optimization technique with a R2 value of 0.45, 0.32, 0.48, 0.21, 0.71, and 0.35 for pH, EC, soil organic carbon, available-N, available-P, and available-K, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943028PMC
http://dx.doi.org/10.3390/jimaging11030083DOI Listing

Publication Analysis

Top Keywords

soil
13
battle royale
12
royale optimization
12
soil properties
12
soil samples
12
soil organic
12
organic carbon
12
predicting soil
8
spectral reflectance
8
reflectance measurement
8

Similar Publications