Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Gestational diabetes mellitus (GDM) affects placental metabolism, influencing both maternal and fetal outcomes. This study investigated the expression of metabolic regulators-Pyruvate Kinase M2 (PKM2), AMP-activated protein kinase (AMPK), and mTOR pathway components-in placental tissues from GDM pregnancies managed with either insulin (GDM-I) or dietary interventions (GDM-D). We hypothesize that metabolic adaptation in GDM is differentially regulated by treatment modality. This study analyzed 30 cases, including 10 control pregnancies,10 GDM-D cases, and 10 GDM-I cases. Analytical methods included immunofluorescence and immunoblotting. We observed an upregulation of PKM2 in both GDM-I and GDM-D placentas, suggesting enhanced glycolytic adaptation under GDM-induced metabolic stress. AMPK expression was significantly elevated in GDM-I and moderately increased in GDM-D placentas, potentially compensating for insulin resistance by promoting glucose uptake and energy homeostasis. Furthermore, mTOR pathway activation differed by treatment type, suggesting a treatment-specific mTOR response. The metabolic changes observed suggest that treatment modality in GDM may have direct implications for maternal and fetal health. Our findings indicate that while insulin and dietary management support metabolic adaptation in GDM, they do so through distinct mechanisms. These findings support a personalized approach in GDM treatment, where patient-specific metabolic responses should guide therapeutic decisions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940920PMC
http://dx.doi.org/10.3390/cells14060416DOI Listing

Publication Analysis

Top Keywords

ampk mtor
8
mtor response
8
insulin dietary
8
dietary management
8
maternal fetal
8
mtor pathway
8
metabolic adaptation
8
adaptation gdm
8
treatment modality
8
gdm-d placentas
8

Similar Publications

SGLT-2 inhibitors are a relatively new class of antidiabetic drugs. They activate a transcriptional response similar to calorie restriction characterized by the up-regulation of sensors involved in nutrient deprivation, such as SIRT1 and AMPK, and the down-regulation of mTOR, a molecule involved in nutritional excess signaling. The purpose of this review is to illustrate the main pathways of nutrient deprivation: a complex mechanistic framework partly responsible for the cardio-renal benefits that makes these drugs unique.

View Article and Find Full Text PDF

Alleviating effects of polyphenol extract from rapeseed meal on type 2 diabetes in mice via modulation of gut microbiota and AMPK/mTOR signaling pathways.

Food Res Int

November 2025

Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition

Type 2 diabetes mellitus (T2DM) is a a complex metabolic disorder that poses a serious threat to human health. Although polyphenol extract from rapeseed meal (RMP) has demonstrated inhibitory activity against α-glucosidase, the alleviating effects on T2DM and the underlying molecular mechanisms remain largely unexplored in T2DM. In this study, the antidiabetic effects of RMP were investigated using a T2DM mouse model induced by a high-fat diet (HFD) combined with streptozotocin (STZ) administration.

View Article and Find Full Text PDF

Cultured meat represents an innovative alternative to conventional livestock-derived meat, yet faces challenges in establishing efficient, safe, and sustainable culture systems. Although traditional supplements such as fetal bovine serum and bovine eye fluid provide essential growth factors for cell proliferation, their high cost, ethical concerns, and biosafety risks significantly hinder large-scale industrialization. In recent years, protein hydrolysates have emerged as promising components in serum-free media.

View Article and Find Full Text PDF

Thyroid hormones (TH), primarily triiodothyronine (T3) and thyroxine (T4), are critical regulators of metabolic rate, mitochondrial function, and cellular repair mechanisms. Emerging evidence suggests that thyroid status may significantly influence aging trajectories and longevity through modulation of key cellular pathways. Objective: This review explores the role of thyroid hormones in aging biology, with a focus on their interaction with longevity-associated signaling pathways and the hallmarks of aging.

View Article and Find Full Text PDF

Objective: In traditional Chinese medicine, asthma is associated with deficiencies in Lung Qi, Spleen Qi, and Kidney Qi. This study investigated the therapeutic mechanism of point application therapy focusing on the acupoints Feishu (BL13), Pishu (BL20), and Shenshu (BL23) for asthma treatment.

Methods: An asthma model was established in Wistar rats via intraperitoneal ovalbumin injection combined with nebulisation.

View Article and Find Full Text PDF