A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Enhanced Detection of Lipids and Proteins Using Graphene-Polyglycerol Amine via Mass Spectrometry. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The accurate and rapid identification of bacterial pathogens poses a significant challenge in clinical diagnostics, environmental monitoring, and microbial research. Lipidomics and proteomics serve as powerful methodologies for bacterial characterization; however, the complexity of biological matrices and the low abundance of bacterial lipids often limit effective detection. This study introduces graphene-polyglycerol amine (G-PGA) as a novel nanomaterial that enhances the selective trapping and detection of using desorption electrospray ionization mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The antimicrobial properties of G-PGA reveal a minimum inhibitory concentration (MIC) of 250 μg/μL and a minimum bactericidal concentration (MBC) of 500 μg/μL. Optimal sonication conditions (10 min) maximize G-PGA's surface activity, facilitating effective bacterial trapping while maintaining cellular integrity, as confirmed by scanning electron microscopy and atomic force microscopy. Molecular docking simulations show a strong affinity between G-PGA and the β-barrel assembly machinery (BAM) proteins of , suggesting potential disruption of critical bacterial processes. Preconcentration with G-PGA significantly improves detection sensitivity and signal-to-noise ratio in mass spectrometry analyses, highlighting its potential as a transformative tool for rapid, sensitive, and highly specific bacterial identification in lipidomics and proteomics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jproteome.4c01116DOI Listing

Publication Analysis

Top Keywords

mass spectrometry
16
graphene-polyglycerol amine
8
lipidomics proteomics
8
bacterial
6
enhanced detection
4
detection lipids
4
lipids proteins
4
proteins graphene-polyglycerol
4
mass
4
amine mass
4

Similar Publications