98%
921
2 minutes
20
Nanoblades are viral particles loaded with the Cas9 protein complexed with gRNA, which allowed efficient gene editing in hematopoietic stem and progenitor cells (HSPCs). Combined with recombinant adeno-associated vector (rAAV) 6 containing two homologous arms to a gene locus resulted in 50% of expression cassette knockin into HSPCs. However, high effective doses of rAAV6 induced HSPC cell death. Here, we demonstrated that, at high doses, rAAV2 was much less toxic for template DNA delivery and allowed transduction levels in HSPCs equivalent to rAAV6. To improve donor template delivery, rAAV2 and rAAV6 were chemically bio-conjugated with a mannose ligand, via the lysine or tyrosine amino acid residues exposed at the adeno-associated vector (AAV) capsid surface. High-level transduction of HSPCs with mannose-coupled rAAV6 vectors accompanied by a remarkable lower toxicity was achieved as compared to control rAAV6 in correlation with highly reduced p53 pathway activation. Mannose-conjugated rAAV6 combined with nanoblades allowed efficient gene knockin and increased survival of HSPCs from 10% to 80% as compared to the unmodified rAAV6 even in the most immature CD34CD38lowCD90 hematopoietic stem cell (HSC) population. Summarizing, mannose-conjugated rAAV6 maintained high-level donor mediated gene knockin when combined with nanoblades without inducing significant toxicity for the HSPCs, an important feature for clinical translation of HSPC gene-editing strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11930132 | PMC |
http://dx.doi.org/10.1016/j.omtn.2025.102495 | DOI Listing |
Biol Open
September 2025
Departments of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, R3T 2N2, Canada.
The GM2 gangliosidoses are lysosomal storage disorders exhibiting a spectrum of neurological phenotypes ranging from childhood death to debilitating adult-onset neurological impairment. To date, no mouse model harbouring a specific human mutation causing GM2 gangliosidosis has been created. We used CRISPR/Cas9 to generate knockin (KI) mice with the common adult-onset Hexa Gly269Ser variant as well as knockout (KO) mice with Hexa mutations expected to cause complete HexA deficiency.
View Article and Find Full Text PDFCell Rep
September 2025
Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern M
Myelination is essential for normal brain function, yet the mechanisms governing neuron-oligodendrocyte interactions that ensure proper myelination levels remain poorly understood. Here, we identify transcription factor EB (TFEB) as a molecular link that connects extrinsic neuronal cues to intrinsic oligodendrocyte transcriptional programs, regulating central nervous system myelination. Using a TFEB epitope-tagged knock-in mouse model, we find that neurons sequester most of the TFEB protein in the cytoplasm of myelinating oligodendrocytes.
View Article and Find Full Text PDFCell Rep
September 2025
Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Pôle de Recherches Sino-Français en Science du Vivant et Gé
RNA helicase DDX3X is generally implicated in inflammasome activation and anti-viral responses. We characterize the common features of scattered DDX3X mutations in lymphoid cancers using molecular dynamics simulation and crystallization, thereby demonstrating their crucial role in Epstein-Barr virus (EBV) lytic gene-driven oncogenic processes. The DDX3X mutation is significantly related to impaired stimulator of interferon genes (STING)/ interferon regulatory factor 7 (IRF-7)/interferon (IFN)-α/β-mediated innate immunity, overexpression of EBV lytic gene BNLF2b, and increased formation of R-loops.
View Article and Find Full Text PDFDiverse epigenetic regulatory mechanisms ensure and regulate cellular diversity. Among others, the histone 3 lysine 9 me3 (H3K9me3) post translational modification participates in silencing lineage-inappropriate genes. H3K9me3 restricts access of transcription factors and other regulatory proteins to cell-fate controlled genes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Advanced Medical Technologies, National Cerebral and Cardiovascular Center, Suita, Osaka 564-8565, Japan.
In mammals, sperm formation is completed in the seminiferous tubules within the testis, and sperm maturation occurs during the epididymal transit of the spermatozoa. Sperm morphology drastically changes when abnormal spermatozoa migrate from the testis to the epididymis. Detailed molecular mechanisms for sperm survival in the epididymis have not been determined yet.
View Article and Find Full Text PDF