Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Introduction: Human Endogenous Retroviruses (HERVs), which can be activated by viral infections, have complex roles in gene regulation and immune modulation. However, their contribution to disease progression is not yet fully understood. Dengue fever ranges from mild symptoms to severe cases characterized by plasma leakage and immune dysregulation, providing a relevant context to investigate these interactions.
Methods: This study comes up with a comprehensive analysis of differentially expressed HERVs (DE-HERVs), protein-coding genes (DEGs), and regulatory elements such as microRNAs (DE-miRNA) and non-LTR retroviruses (DE-LINEs and DE-SINEs) derived from the transcriptomes of Brazilian dengue patients across different disease stages.
Results: The results show that DE-HERVs are associated with key genes identified in severe dengue cases, including , , , and , suggesting their role in immune modulation and endothelial permeability. Specifically, the upregulation of and genes in patients who progressed to severe dengue correlates with a complex regulatory network involving down-regulated microRNAs (miRNAs) and non-LTR retroviruses, emphasizing their relevance to inflammation and vascular permeability. MicroRNAs and non-LTR retroviruses were found to regulate these genes differently across dengue stages, with non-LTR elements appearing predominantly in non-severe cases and miRNA expression profiles varying across the comparison groups.
Discussion: These findings improve our understanding of the molecular mechanisms underlying dengue progression and suggest that HERV-related regulatory networks may influence viral infections. Further research is required to clarify the specific roles of HERVs in dengue pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925782 | PMC |
http://dx.doi.org/10.3389/fimmu.2025.1557588 | DOI Listing |