Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Progressive supranuclear palsy (PSP) is a rare, debilitating neurodegenerative disorder that significantly impairs both motor and cognitive functions. Current pharmacological treatments offer only transient symptomatic relief, driving interest in the past in alternative therapeutic strategies such as deep brain stimulation. Deep brain stimulation (DBS), known for its success in treating motor symptoms of Parkinson's disease, has been explored as a possible symptomatic treatment for PSP, considering the pedunculopontine nucleus (PPN), involved in motor control and postural stability, as a promising target for deep brain stimulation in PSP. However, its complex anatomy and the clinical variability of PSP complicate the prediction and generalization of the effectiveness of DBS. The present review examines the existing studies in the literature about DBS in PSP patients. Some studies highlighted modest benefits in motor symptoms, while others reported variable outcomes and inherent risks of the procedure. Generally, patients with a parkinsonism predominant phenotype have shown some subjective or clinical improvements in gait and balance when subjected to low-frequency stimulation. While DBS of the PPN holds promise for ameliorating gait and balance of PSP, current evidence does not yet establish clear criteria for ideal candidates, nor does it provide overwhelmingly supportive results in favor of PPN-DBS in PSP patients. Without any further systematic study is not possible to define accurate candidate selection parameters and understand long-term outcomes and safety profiles.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00702-025-02904-4DOI Listing

Publication Analysis

Top Keywords

deep brain
16
brain stimulation
16
progressive supranuclear
8
supranuclear palsy
8
stimulation dbs
8
motor symptoms
8
psp patients
8
gait balance
8
psp
7
stimulation
5

Similar Publications

A spatial-frequency hybrid restoration network for JPEG compressed image deblurring.

Neural Netw

September 2025

organization=Chongqing Key Laboratory of Computer Network and Communication Technology, School of Computer Science and Technology (National Exemplary Software School), Chongqing University of Posts and Telecommunications, city=Chongqing, postcode=400065, country=China. Electronic address: tianh519@1

Image deblurring and compression-artifact removal are both ill-posed inverse problems in low-level vision tasks. So far, although numerous image deblurring and compression-artifact removal methods have been proposed respectively, the research for explicit handling blur and compression-artifact coexisting degradation image (BCDI) is rare. In the BCDI, image contents will be damaged more seriously, especially for edges and texture details.

View Article and Find Full Text PDF

Background And Objectives: Neuroimaging findings in immune effector cell-associated neurotoxicity syndrome (ICANS) have not been systematically described. We created the chimeric antigen receptor (CAR) T-cell Neurotoxicity Imaging Virtual Archive Library (CARNIVAL), a centralized imaging database for children and young adults receiving CAR T-cell therapy. Objectives of this study were to (1) characterize neuroimaging findings associated with ICANS and (2) determine whether specific ICANS-related neuroimaging findings are associated with individual neurologic symptoms.

View Article and Find Full Text PDF

The hypothalamus is an ancient brain region that regulates diverse aspects of physiology and behavior, including sleep and wakefulness, appetite, energy homeostasis, anxiety, depression, and social interaction. Specific neuronal populations in the hypothalamus exert their effects via the release of neurotransmitters and neuropeptides. Whole-cell patch-clamp recording is an indispensable approach for studying the roles of these factors in synaptic transmission and brain function.

View Article and Find Full Text PDF

Objective: Transcranial ultrasound (US) stimulation (TUS) has emerged as a promising technique for minimally invasive, localized, deep brain stimulation. However, indirect auditory effects during neuromodulation require careful consideration, particularly in experiments with rodents. One method to prevent auditory responses involves applying tapered envelopes to US bursts.

View Article and Find Full Text PDF

Simulations in three dimensions and time provide guidance on implantable, electroenzymatic glutamate sensor design; relative placement in planar sensor arrays; feasibility of sensing synaptic release events; and interpretation of sensor data. Electroenzymatic sensors based on the immobilization of oxidases on microelectrodes have proven valuable for the monitoring of neurotransmitter signaling in deep brain structures; however, the complex extracellular milieu featuring slow diffusive mass transport makes rational sensor design and data interpretation challenging. Simulations show that miniaturization of the disk-shaped device size below a radius of ∼25 μm improves sensitivity, spatial resolution, and the accuracy of glutamate concentration measurements based on calibration factors determined .

View Article and Find Full Text PDF