Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Current traceability systems rely heavily on external markers which can be altered or tampered with. We hypothesized that the unique intramuscular fat patterns in beef cuts could serve as natural physical identifiers for traceability, while simultaneously providing information about quality attributes. To test our hypothesis, we developed a comprehensive dataset of 38,528 high-resolution beef images from 602 steaks with annotations from human grading and ingredient analysis. Using this dataset, we developed a quality prediction module based on the EfficientNet model, achieving high accuracy in marbling score prediction (96.24% top-1±1, 99.57% top-1±2), breed identification (91.23%), and diet determination (90.90%). Additionally, we demonstrated that internal meat features can be used for traceability, attaining F-1 scores of 0.9942 in sample-to-sample tracing and 0.9479 in sample-to-database tracing. This approach significantly enhances fraud resistance and enables objective quality assessment in the red meat supply chain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2025.143830 | DOI Listing |