Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Liquorice (Glycyrrhiza glabra L.) root extract has been used as a natural medicine and sweetener for a long time in many parts of the world. As a result, there has been a considerable emphasis on developing efficient and environmentally friendly methods for extracting bioactive components from Liquorice root. This work aims to examine extracting extract from Liquorice root using a combined ultrasonic-cold plasma reactor to elevate the extraction efficiency. Different parameters, including extraction time, ultrasonic power, and the argon-to-air ratio, were investigated using the Response Surface Methodology (RSM) and Box-Behnken design to raise extract quality. The total phenol and flavonoid content and antioxidant activity were calculated to evaluate this approach, and Glycyrrhizic acid content was quantified by HPLC (High-performance liquid chromatography). Results showed that combining ultrasonic-cold plasma extraction greatly raised the yield of extract and bioactive components compared to conventional maceration and single-method methods. Particularly, The content of total phenol 10.23, 15.96, and 13.29%, total flavonoid content 21.47, 22.19, and 42.41%, and Glycyrrhizic acid 10.84%, 12.38%, and 15.89% increased by ultrasonic, cold plasma, and combined ultrasonic-cold plasma technique, respectively, compared to the maceration technique. Optimization of different extraction techniques showed that the best extract quality came from a mix of ultrasonic power, plasma composition, and extraction time. This study demonstrates that the combined ultrasonic-cold plasma technique is effective and efficient, and this technology has the potential for a new extraction method to present a more sustainable and effective substitute for premium Liquorice extracts for medicinal and commercial uses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929763 | PMC |
http://dx.doi.org/10.1038/s41598-025-94781-w | DOI Listing |