A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Establishment and validation of red fox (vulpes vulpes) airway epithelial cell cultures at the air-liquid-interface. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The airway epithelium represents a central barrier against pathogens and toxins while playing a crucial role in modulating the immune response within the upper respiratory tract. Understanding these mechanisms is particularly relevant for red foxes (Vulpes vulpes), which serve as reservoirs for various zoonotic pathogens like rabies or the fox tapeworm (Echinococcus multilocularis). The study aimed to develop, establish, and validate an air-liquid interface (ALI) organoid model of the fox respiratory tract using primary airway epithelial cells isolated from the tracheas and main bronchi of hunted red foxes. The resulting ALI cultures exhibited a structurally differentiated, pseudostratified epithelium, characterised by ciliated cells, mucus secretion, and tight junctions, as confirmed through histological and immunohistochemical analysis. Functional assessments using a paracellular permeability assay and measurement of transepithelial electrical resistance, demonstrated a tight epithelial barrier. The potential of model's utility for studying innate immune responses to respiratory infections was validated by exposing the cultures to lipopolysaccharide, phorbol-12-myristate-13-acetate and ionomycin, and nematode somatic antigens. Quantitative PCR revealed notable changes in the expression of pro-inflammatory cytokines TNF and IL-33. This in vitro model represents a significant advancement in respiratory research for non-classical species that may act as important wildlife reservoirs for a range of zoonotic pathogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929873PMC
http://dx.doi.org/10.1038/s41598-025-94033-xDOI Listing

Publication Analysis

Top Keywords

vulpes vulpes
8
airway epithelial
8
respiratory tract
8
red foxes
8
zoonotic pathogens
8
establishment validation
4
validation red
4
red fox
4
vulpes
4
fox vulpes
4

Similar Publications