A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Using CRISPR for viral nucleic acid detection. | LitMetric

Using CRISPR for viral nucleic acid detection.

Methods Enzymol

Department of Molecular Biology, Princeton University, Princeton, NJ, United States; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States; Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, United States; Department of Chemis

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pathogenic microorganisms, such as viruses, have threatened human health and will continue to contribute to future epidemics and pandemics, highlighting the importance of developing effective diagnostics. To contain viral outbreaks within populations, fast and early diagnosis of infected individuals is essential. Although current standard methods are highly sensitive and specific, like RT-qPCR, some can have slow turnaround times, which can hinder the prevention of viral transmission. The discovery of CRISPR-Cas systems in bacteria and archaea initially revolutionized the world of genome editing. Intriguingly, CRISPR-Cas enzymes also have the ability to detect nucleic acids with high sensitivity and specificity, which sparked the interest of researchers to also explore their potential in diagnosis of viral pathogens. In particular, the CRISPR-Cas13 system has been used as a tool for detecting viral nucleic acids. Cas13's capability to detect both target RNA and non-specific RNAs has led to the development of detection methods that leverage these characteristics through designing specific detection read-outs. Optimization of viral sample collection, amplification steps and the detection process within the Cas13 detection workflow has resulted in assays with high sensitivity, rapid turnaround times and the capacity for large-scale implementation. This review focuses on the significant innovations of various CRISPR-Cas13-based viral nucleic acid detection methods, comparing their strengths and weaknesses while highlighting Cas13's great potential as a tool for viral diagnostics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.mie.2025.01.031DOI Listing

Publication Analysis

Top Keywords

viral nucleic
12
nucleic acid
8
acid detection
8
turnaround times
8
nucleic acids
8
high sensitivity
8
detection methods
8
viral
7
detection
6
crispr viral
4

Similar Publications