98%
921
2 minutes
20
Identifying single or groups of animals has significantly advanced our understanding of animal biology and ecology. However, labelling is extremely difficult in small animals, like soil invertebrates. Due to the complexity of current methods, the dynamics and interactions of these populations are often studied indirectly. Labelling nematodes or microarthropods such as collembolans or soil acari has been challenging due to the high cost, potential toxicity, genetic modification requirements, cellular processes interference, and photobleaching. In this scenario, no methods can be applied to large numbers of microorganisms at once due to their mentioned practical and biological limitations and cost. In this work we show that quantum carbon dots (Cdots) are effective for labelling infective juveniles (IJs) of entomopathogenic nematodes (EPNs). In in vitro assays the IJs gradually acquired fluorescence, as Cdots accumulated in the lysosome-related organelles from their intestine cells, peaking at day 14, and with no lethal or sub-lethal effects on IJs. Fluorescence was clearly distinguishable from the natural auto-fluorescence of non-labelled IJs and persisted for months in IJs transferred to water. We and non-experts easily differentiated between similar species of EPNs and between two strains of S. feltiae placed in the same matrix (soil or water). We demonstrated for the first time the feasibility of labelling large numbers of IJs (hundreds of thousands/millions) with Cdots at minimal cost without any adverse effects for over a year. Our findings could be the starting point for detailed and large-scale field investigations on nematodes and other small organisms, allowing deeper understanding of their roles in soil ecosystems. This method provides a cost-effective and reliable tool for advancing research in the ecology of soil invertebrates, such as the interactions occurring in communities or between specific organisms, movement and dispersal, population dynamics or ecosystem services in a cryptic environment difficult to study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jip.2025.108317 | DOI Listing |
Appl Environ Microbiol
September 2025
DGIMI, Université de Montpellier, INRAE, Montpellier, France.
is an entomopathogenic bacterium involved in a mutualistic relationship with nematodes. produces a multitude of specialized metabolites by non-ribosomal peptide synthetase (NRPS) pathways to mediate bacterium-nematode-insect interactions. PAX cyclolipopeptides are a family of NRP-type molecules whose ecological role remains poorly understood.
View Article and Find Full Text PDFBiology (Basel)
July 2025
Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.
species are entomopathogenic bacteria that live in symbiosis with nematodes and produce a wide range of bioactive secondary metabolites. This study aimed to characterize the complete genomes and biosynthetic potential of two novel isolates, ALN7.1 and ALN11.
View Article and Find Full Text PDFJ Invertebr Pathol
August 2025
School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA; Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA. Electronic address:
Previous studies conducted by our team have shown that three secondary metabolites (SMs) from Photorhabdus luminescens sonorensis, trans-cinnamic acid (TCA), (4E)-5-phenyl-4-pentenoic acid (PPA), and indole, exhibit nematicidal and/or nematistatic activities against root knot and citrus nematodes, with no discernible effects on non-target entomopathogenic nematodes (EPNs). To further explore the post-exposure fitness of EPNs, this study focused on the effects of these SMs on the virulence and reproductive fitness of three EPNs: Heterorhabditis sonorensis (the native host of P. l.
View Article and Find Full Text PDFJ Econ Entomol
August 2025
Planta Piloto de Procesos Industriales Microbiológicos y Biotecnología (PROIMI-CONICET), Departamento de Control Biológico, San Miguel de Tucumán, Tucumán, Argentina.
Drosophila suzukii Matsumura (Diptera: Drosophilidae), or spotted wing drosophila is one of the most relevant threats to global fruit production and trade. In South America, D. suzukii was detected and established in Brazil in 2013, Uruguay and Argentina in 2014, and Chile in 2017.
View Article and Find Full Text PDFJ Chem Ecol
August 2025
Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA.
Volatile organic compounds are important chemical signals involved in plant-insect interactions. In recent decades, volatiles have been used in many agricultural applications to help control crop pests, but fewer applications have been developed for belowground pests despite volatile signaling and olfactory cues being crucial for orientation and communication of belowground organisms. Volatile signals also depend heavily on soil characteristics which influence both production and diffusion of these volatile compounds.
View Article and Find Full Text PDF