Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Single-molecule science is a unique technique for unraveling molecular biophysical processes. Sensitivity to single molecules provides the capacity for the early diagnosis of low biomarker amounts. Furthermore, the miniaturization of instruments for portable diagnostic tools toward point-of-care testing (POCT) is a crucial development in this field. Herein, we discuss recent developments in single-molecule sensing platforms and their advantages for diagnostics over bulk measurements including molecular size measurements, interaction dynamics, and fast biomarker sensing and sequencing at low concentrations. We highlight the capabilities of dynamic optical and electrical sensing platforms for single-biomolecule and single-vesicle monitoring associated with neurodegenerative disorders, viral diseases, cancers, and more. Current approaches to instrument miniaturization have brought technology closer to portable diagnostics settings via smartphone-based devices, multifunctional portable microscopes, handheld electrical circuit devices, and remote single-molecule assays. Finally, we provide an overview of the clinical applications of single-molecule sensors in POCT assays. Altogether, single-molecule analyses platforms exhibit significant potential for the development of novel portable healthcare devices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2025.117361DOI Listing

Publication Analysis

Top Keywords

sensing platforms
8
single-molecule
6
advances dynamic
4
dynamic single-molecule
4
single-molecule analysis
4
platforms
4
analysis platforms
4
platforms diagnostics
4
diagnostics advantages
4
advantages bulk
4

Similar Publications

Background: Breast cancer treatment, particularly during the perioperative period, is often accompanied by significant psychological distress, including anxiety and uncertainty. Mobile health (mHealth) interventions have emerged as promising tools to provide timely psychosocial support through convenient, flexible, and personalized platforms. While research has explored the use of mHealth in breast cancer prevention, care management, and survivorship, few studies have examined patients' experiences with mobile interventions during the perioperative phase of breast cancer treatment.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) remain a leading cause of death, particularly in developing countries, where their incidence continues to rise. Traditional CVD diagnostic methods are often time-consuming and inconvenient, necessitating more efficient alternatives. Rapid and accurate measurement of cardiac biomarkers released into body fluids is critical for early detection, timely intervention, and improved patient outcomes.

View Article and Find Full Text PDF

Thermotolerant yeasts promoting climate-resilient bioproduction.

FEMS Yeast Res

September 2025

Department of Bioengineering, School of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran.

The growing challenges posed by global warming and the demand for sustainable food and feed resources underscore the need for robust microbial platforms in bioprocessing. Thermotolerant yeasts have emerged as promising candidates due to their ability to thrive at elevated temperatures and other industrially relevant stresses. This review examines the industrial potential of thermotolerant yeasts in the context of climate change, emphasizing how their resilience can lead to more energy-efficient and cost-effective bioprocesses.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by persistent hyperglycemia with multiple clinical manifestations and complications, such as cardiovascular disease, kidney dysfunction, retinal impairment, and peripheral neuropathy. Continuous and minimally invasive glucose monitoring is essential for effective DM management. Microneedles (MNs)-based sensing platforms offer a promising solution; however, conventional polymeric MNs suffer from limited electrochemical sensitivity due to their insufficient electroactive surface area and inefficient loading of catalytic and enzymatic components.

View Article and Find Full Text PDF

The demand for rapid, field-deployable detection of hazardous substances has intensified the search for plasmonic sensors with both high sensitivity and fabrication simplicity. Conventional approaches to plasmonic substrates, however, often rely on lithographic precision or complex chemistries limiting scalability and reproducibility. Here, a facile, one-step synthesis of vertically aligned 2D nanosheets composed of intergrown CuO/CuO crystallites is presented, fabricated via oxygen plasma discharge on copper substrates.

View Article and Find Full Text PDF