Pulsed field ablation for complex variant pulmonary vein and posterior wall isolation using the Varipulse catheter: a case report.

Eur Heart J Case Rep

Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Medizinische Fakultät OWL der Universität Bielefeld, Georgstr. 11, Bad Oeynhausen 32545, Germany.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925008PMC
http://dx.doi.org/10.1093/ehjcr/ytaf107DOI Listing

Publication Analysis

Top Keywords

pulsed field
4
field ablation
4
ablation complex
4
complex variant
4
variant pulmonary
4
pulmonary vein
4
vein posterior
4
posterior wall
4
wall isolation
4
isolation varipulse
4

Similar Publications

Background And Aims: Aim of this study was to assess the risk of hemolysis, the extent of myocardial and neural injury after monopolar, monophasic pulsed field ablation (PFA) using a lattice-tip catheter in comparison to single-shot PF ablation platforms employing bipolar, biphasic waveforms.

Methods: This prospective study included consecutive patients undergoing PFA for atrial fibrillation (AF) using the Affera™ mapping and ablation system (n=40). Biomarkers for hemolysis (haptoglobin, LDH, bilirubin), myocardial injury (high-sensitive troponin T, CK, CK-MB), neurocardiac injury (S100), and renal function (creatinine) were assessed pre- and within 24 hours post-ablation.

View Article and Find Full Text PDF

Biomolecular dynamics in the microsecond-to-millisecond (µs-ms) timescale are linked to various biological functions, such as enzyme catalysis, allosteric regulation, and ligand recognition. In solution state NMR, Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments are commonly used to probe µs-ms timescale motions, providing detailed kinetic, thermodynamic, and mechanistic information at the atomic level. For investigating conformational dynamics in high-molecular-weight biomolecules, methyl groups serve as ideal probes due to their favorable relaxation properties, and C CPMG relaxation dispersion is widely employed for characterizing dynamics in selectively CH-labeled samples.

View Article and Find Full Text PDF

Designing Spin-Correlated Radical Ion Pairs for Quantum Sensing of Electric Fields: Effect of Electron-Nuclear Hyperfine Coupling.

J Phys Chem A

September 2025

Department of Chemistry, Institute for Quantum Information Research and Engineering, and Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208-3113, United States.

Light-driven formation of radical ion pairs that occurs much faster than their electron spin dynamics results in correlated spins whose coherence properties can be used as a quantum-based electric field sensor. This results from the radical ion pair having charge and spin distributions that track one another. Thus, electric field induced changes in the distance between the two charges are reflected in the spin-spin distance that can be measured directly using out-of-phase electron spin echo envelope modulation (OOP-ESEEM), a pulse-EPR technique.

View Article and Find Full Text PDF

Electroporation is a promising technology utilizing electrical pulses for macromolecule delivery and soft-tissue ablation, with applications that include next-generation prophylactics and the treatment of genetic diseases such as cancer. This study demonstrates a high-throughput capable 3D tissue culture model for quantification of the reversible and irreversible electroporation thresholds for a given electroporation protocol. By using a non-uniform electric field and analyzing the spatial distribution of transfected cells, both reversible and irreversible thresholds can be identified within a single sample, increasing the efficiency at which electroporation protocols can be characterized, especially for in vivo translation.

View Article and Find Full Text PDF

Effects of Imidacloprid on Afrotropical Aquatic Ecosystems: A South African Microcosm Study.

Integr Environ Assess Manag

September 2025

Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.

Pesticides are widely used to meet the food demands of a growing population, with various types used to control pests depending on the crops grown. Rainfall, overspray, and runoff from agricultural fields can wash these insecticides into water bodies, posing documented environmental risks. Imidacloprid is commonly used in Afrotropical regions such as South Africa, yet limited information is available on its toxicity to aquatic ecosystems within this climate region.

View Article and Find Full Text PDF