98%
921
2 minutes
20
China is currently at a crucial stage of systematically advancing the construction of sponge cities and completely implementing the "synergetic enhancement of pollution and carbon emission reduction." The pollution and carbon emission reduction benefits during the operational phase of sponge source control facilities, as well as the synergistic path must be crucially understood scientifically. Taking 30 sponge city construction projects in Wuxi, Jiangsu Province as examples, we analyzed the pollution and carbon emission reduction benefits, construction costs, and determined the synergistic relationship among them during the operational phase. Additionally, we proposed a synergistic path among the three by utilizing a constrained NSGA-Ⅱ multi-objective optimization algorithm. The results showed differences in the pollutant and carbon reduction capacity and the composition of carbon reduction capacity (carbon sequestration by vegetation, carbon storage by runoff, and carbon reduction by pollution reduction) of sponge source control facilities (infiltration rain gardens, drainage rain gardens, undercrofts, planted swales, and permeable pavement). Therefore, the ratio of the underlying surface area of the sponge source control facilities influenced the pollutant and carbon emission reduction benefits and costs of the project; however, a marginal effect was observed, which was mainly reflected in the permeable pavement to the pollution reduction benefits of the project (=0.423 9). The synergy between the pollution reduction benefit and carbon emission reduction benefit of sponge projects was weak, in which the pollution reduction benefit had a trend of increasing marginal cost for the pollution reduction benefit (=0.784 4), whereas the carbon emission reduction benefit was linearly correlated with the construction cost (=0.544 7). Furthermore, a multi-objective optimization algorithm was employed to propose a series of distinct combinations of sponge source control facilities, each optimized for a distinct set of objectives. The results elucidate the pollution and carbon emission reduction benefits and synergistic optimization path of sponge source facilities in the operation phase, which can provide scientific basis for achieving the goal of "pollution and carbon emission reduction, greening, and growth" and maximizing ecological value.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.202403119 | DOI Listing |
J Phys Chem Lett
September 2025
Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States.
Carbon dots (CDs) represent a new class of nontoxic and sustainable nanomaterials with increasing applications. Among them, bright and large Stokes-shift CDs are highly desirable for display and imaging, yet the emission mechanisms remain unclear. We obtained structural signatures for the recently engineered green and red CDs by ground-state femtosecond stimulated Raman spectroscopy (FSRS), then synthesized orange CDs with similar size but much higher nitrogen dopants than red CDs.
View Article and Find Full Text PDFPharmacoeconomics
September 2025
Department of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden.
Background: Immune checkpoint inhibitors (ICIs) are clinically beneficial but associated with high costs that represent a growing challenge for healthcare budgets and may affect affordability, especially in resource-limited settings. Moreover, the healthcare sector is a significant source of greenhouse gas emissions, and medication-related waste-such as that from vial-based therapies-has been identified as a contributing factor. Alternative dosing strategies could reduce the environmental and financial impact of ICI therapy while maintaining clinical safety and efficacy.
View Article and Find Full Text PDFNanoscale
September 2025
Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
Correction for 'Carbon dots with tunable dual emissions: from the mechanism to the specific imaging of endoplasmic reticulum polarity' by E. Shuang , , 2020, , 6852-6860, https://doi.org/10.
View Article and Find Full Text PDFPatterns (N Y)
July 2025
Harvard University, Cambridge, MA, USA.
This article presents a holistic research agenda to address the significant environmental impact of information and communication technology (ICT), which accounts for 2.1%-3.9% of global greenhouse gas emissions.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
Department of Environment and Life Science, KSKV Kachchh University, Bhuj, Gujarat, 370 001, India.
India's energy demand increased by 7.3% in 2023 compared to 2022 (5.6%), primarily met by coal-based thermal power plants (TPPs) that contribute significantly to greenhouse gas emissions.
View Article and Find Full Text PDF