[Pollution and Carbon Emission Reduction and Synergistic Pathways in the Operation Phase of Sponge City Source Control Facilities].

Huan Jing Ke Xue

State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

China is currently at a crucial stage of systematically advancing the construction of sponge cities and completely implementing the "synergetic enhancement of pollution and carbon emission reduction." The pollution and carbon emission reduction benefits during the operational phase of sponge source control facilities, as well as the synergistic path must be crucially understood scientifically. Taking 30 sponge city construction projects in Wuxi, Jiangsu Province as examples, we analyzed the pollution and carbon emission reduction benefits, construction costs, and determined the synergistic relationship among them during the operational phase. Additionally, we proposed a synergistic path among the three by utilizing a constrained NSGA-Ⅱ multi-objective optimization algorithm. The results showed differences in the pollutant and carbon reduction capacity and the composition of carbon reduction capacity (carbon sequestration by vegetation, carbon storage by runoff, and carbon reduction by pollution reduction) of sponge source control facilities (infiltration rain gardens, drainage rain gardens, undercrofts, planted swales, and permeable pavement). Therefore, the ratio of the underlying surface area of the sponge source control facilities influenced the pollutant and carbon emission reduction benefits and costs of the project; however, a marginal effect was observed, which was mainly reflected in the permeable pavement to the pollution reduction benefits of the project (=0.423 9). The synergy between the pollution reduction benefit and carbon emission reduction benefit of sponge projects was weak, in which the pollution reduction benefit had a trend of increasing marginal cost for the pollution reduction benefit (=0.784 4), whereas the carbon emission reduction benefit was linearly correlated with the construction cost (=0.544 7). Furthermore, a multi-objective optimization algorithm was employed to propose a series of distinct combinations of sponge source control facilities, each optimized for a distinct set of objectives. The results elucidate the pollution and carbon emission reduction benefits and synergistic optimization path of sponge source facilities in the operation phase, which can provide scientific basis for achieving the goal of "pollution and carbon emission reduction, greening, and growth" and maximizing ecological value.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.202403119DOI Listing

Publication Analysis

Top Keywords

carbon emission
36
emission reduction
32
source control
20
reduction benefits
20
sponge source
20
reduction benefit
20
pollution carbon
16
control facilities
16
pollution reduction
16
reduction
15

Similar Publications

Carbon dots (CDs) represent a new class of nontoxic and sustainable nanomaterials with increasing applications. Among them, bright and large Stokes-shift CDs are highly desirable for display and imaging, yet the emission mechanisms remain unclear. We obtained structural signatures for the recently engineered green and red CDs by ground-state femtosecond stimulated Raman spectroscopy (FSRS), then synthesized orange CDs with similar size but much higher nitrogen dopants than red CDs.

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors (ICIs) are clinically beneficial but associated with high costs that represent a growing challenge for healthcare budgets and may affect affordability, especially in resource-limited settings. Moreover, the healthcare sector is a significant source of greenhouse gas emissions, and medication-related waste-such as that from vial-based therapies-has been identified as a contributing factor. Alternative dosing strategies could reduce the environmental and financial impact of ICI therapy while maintaining clinical safety and efficacy.

View Article and Find Full Text PDF

Correction: Carbon dots with tunable dual emissions: from the mechanism to the specific imaging of endoplasmic reticulum polarity.

Nanoscale

September 2025

Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.

Correction for 'Carbon dots with tunable dual emissions: from the mechanism to the specific imaging of endoplasmic reticulum polarity' by E. Shuang , , 2020, , 6852-6860, https://doi.org/10.

View Article and Find Full Text PDF

This article presents a holistic research agenda to address the significant environmental impact of information and communication technology (ICT), which accounts for 2.1%-3.9% of global greenhouse gas emissions.

View Article and Find Full Text PDF

India's energy demand increased by 7.3% in 2023 compared to 2022 (5.6%), primarily met by coal-based thermal power plants (TPPs) that contribute significantly to greenhouse gas emissions.

View Article and Find Full Text PDF