98%
921
2 minutes
20
Fetal MRI offers a broad spectrum of applications, including the investigation of fetal brain development and facilitation of early diagnosis. However, image quality is often compromised by motion artifacts arising from both maternal and fetal movement. To mitigate these artifacts, fetal MRI typically employs ultrafast acquisition sequences. This results in the acquisition of three (or more) orthogonal stacks along different spatial axes. Nonetheless, inter-slice motion can still occur. If left uncorrected, such motion can introduce artifacts in the reconstructed 3D volume. Existing motion-correction approaches often rely on a two-step iterative process involving registration followed by reconstruction. They tend to detect and remove a large number of misaligned slices, resulting in poor reconstruction quality. This paper proposes a novel reconstruction-independent method for motion correction. Our approach benefits from the intersection of orthogonal slices and estimates motion for each slice by minimizing the difference between the intensity profiles along their intersections. To address potential misalignments, we present an innovative machine learning-based classifier for identifying misaligned slices. The parameters of these slices are then corrected using a multistart optimization approach. Quantitative evaluation on simulated datasets demonstrates very low registration errors. Qualitative analysis on real data further highlights the effectiveness of our approach compared to state-of-the-art methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2025.110005 | DOI Listing |
Pol Merkur Lekarski
September 2025
AMERIDENT NON-PUBLIC HEALTH CARE INSTITUTION CIVIL LAW PARTNERSHIP MARIA AND LAZARZ LEGIEN, BIELSKO-BIALA, POLAND.
Objective: Aim: Iodine is an essential nutrient for the synthesis of thyroid hormones. It has a huge impact on the normal brain development of the foetus and the health of the pregnant woman. During pregnancy and lactation, the need for iodine increases significantly.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Pathology, Boston Children's Hospital, Harvard School of Medicine, Boston, Massachusetts, United States of America.
The Sudden Infant Death Syndrome (SIDS) is a major global health problem, with increased risk among socioeconomically disadvantaged populations. We propose SIDS, or a subset, is due to a defect in the brainstem serotonin system mediating cardiorespiratory integration and arousal. This defect impinges on homeostasis during a critical developmental period in infancy, especially in populations experiencing maternal and infantile stress, resulting in sleep-related sudden death.
View Article and Find Full Text PDFThis manuscript explores the myriad ethical controversies associated with declaration of brain death/death by neurologic criteria (BD/DNC) during pregnancy raised by the case of Ms. Adriana Smith, a 30-year-old Georgia nurse, who came to international attention in May 2025. We will discuss: (1) the factors that may have impacted the decision not to perform neuroimaging when she first presented to medical attention; (2) the significance of identifying and deferring performance of futile interventions to decrease intracranial pressure relative to BD/DNC declaration; (3) the medical, ethical and legal complexities associated with BD/DNC declaration and continuation of maternal organ support in pregnancy; (4) the impact of continuing maternal organ support after BD/DNC declaration on the fetus, the family, Ms.
View Article and Find Full Text PDFMol Omics
September 2025
Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, Missouri 65211, USA.
Mice lacking caveolin-1 (), a major protein of the lipid raft of plasma membrane, show deregulated cellular proliferation of the mammary gland and an abnormal fetoplacental communication during pregnancy. This study leverages a multi-omics approach to test the hypothesis that the absence of elicits a coordinated crosstalk of genes among the mammary gland, placenta and fetal brain in pregnant mice. Integrative analysis of metabolomics and transcriptomics data of mammary glands showed that the loss of significantly impacted specific metabolites and metabolic pathways in the pregnant mice.
View Article and Find Full Text PDFStroke
September 2025
Division of Neonatology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, the Netherlands. (B.O.v.O., M.R., M.S.S., E.L., L.S.d.V., S.J.S.).
Background: Monochorionic twins, characterized by placental sharing and vascular anastomoses, carry a high risk of brain injury, including perinatal arterial ischemic stroke (PAIS). However, the pathophysiology and timing-related risk factors of PAIS remain unclear.
Methods: Retrospective cohort of all monochorionic twins with neuroimaging-confirmed PAIS born from 2005 to 2024 and evaluated at a Dutch national referral center.