Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The dynamics of energy molecules in the mouse brain during metabolic challenges induced by epileptic seizures were examined. A transgenic mouse line expressing a fluorescence resonance energy transfer (FRET)-based adenosine triphosphate (ATP) sensor, selectively expressed in the cytosol of neurons, was used. An optical fiber was inserted into the hippocampus, and changes in cytosolic ATP concentration were estimated using the fiber photometry method. To induce epileptic neuronal hyperactivity, a train of electrical stimuli was delivered to a bipolar electrode placed alongside the optical fiber. Although maintaining a steady cytosolic ATP concentration is crucial for cell survival, a single episode of epileptic neuronal hyperactivity drastically reduced neuronal ATP levels. Interestingly, the magnitude of ATP reduction did not increase with the exacerbation of epilepsy, but rather decreased. This suggests that the primary consumption of ATP during epileptic neuronal hyperactivity may not be solely directed toward restoring the Na and K ionic imbalance caused by action potential bursts. Cytosolic ATP concentration reflects the balance between supply and consumption. To investigate the metabolic flux leading to neuronal ATP production, a new FRET-based pyruvate sensor was developed and selectively expressed in the cytosol of astrocytes in transgenic mice. Upon epileptic neuronal hyperactivity, an increase in astrocytic pyruvate concentration was observed. Changes in the supply of energy molecules, such as glucose and oxygen, due to blood vessel constriction or dilation, as well as metabolic alterations in astrocyte function, may contribute to cytosolic ATP dynamics in neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11923518PMC
http://dx.doi.org/10.1111/jnc.70044DOI Listing

Publication Analysis

Top Keywords

cytosolic atp
16
epileptic neuronal
16
neuronal hyperactivity
16
energy molecules
12
atp concentration
12
atp
9
selectively expressed
8
expressed cytosol
8
optical fiber
8
neuronal atp
8

Similar Publications

Caseinolytic protease P (ClpP) is a highly conserved serine protease that plays a pivotal role in protein homeostasis and quality control in bacteria, mitochondria of mammalian cells, and plant chloroplasts. As the proteolytic core of the ATP-dependent Clp protease complex, ClpP partners with regulatory ATPases (e.g.

View Article and Find Full Text PDF

Epigallocatechin-3-gallate (EGCG), the main catechin in green tea, is associated with antidiabetic and anti-obesity effects, although its acute hepatic actions remain unclear. We investigated short-term effects of EGCG (10-500 μm) using isolated perfused rat livers and complementary assays in mitochondrial, microsomal, and cytosolic fractions. EGCG markedly inhibited gluconeogenesis from lactate (up to 52%), glycerol (33%), and alanine (47%), while it stimulated glycolysis, glycogenolysis, and oleic acid oxidation (+42% total ketone bodies).

View Article and Find Full Text PDF

Cooperative contribution of multiple energy substrate pathways to floral thermogenesis in sacred lotus.

Plant J

September 2025

State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Fores

Floral thermogenesis in lotus (Nelumbo nucifera) is a highly energy-intensive process, requiring substantial metabolic reconfiguration and substrate input. However, the mechanisms coordinating energy substrate supply during this process remain unclear. Here, we integrated microscale proteomics, time-series transcriptomics, and mitochondrial feeding assays to elucidate the substrate provisioning strategies supporting thermogenesis in lotus receptacles.

View Article and Find Full Text PDF

Objectives: Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting millions globally, with no current cure despite extensive research efforts. The neurotoxin MPTP is commonly used as a PD model by inhibiting mitochondrial complex I. Nicotine, the primary alkaloid in tobacco, has shown potential neuroprotective effects against neurodegenerative diseases, including PD, although the precise mechanisms remain unclear.

View Article and Find Full Text PDF

Pacemaker myocytes of the sinoatrial (SA) node initiate each heartbeat through coupled voltage and Ca oscillators, but whether ATP supply is regulated on a beat-by-beat schedule in these cells has been unclear. Using genetically encoded sensors targeted to the cytosol and mitochondria, we tracked beat-resolved ATP dynamics in intact mouse SA node and isolated myocytes. Cytosolic ATP rose transiently with each Ca transient and segregated into high- and low-gain phenotypes defined by the Ca-ATP coupling slope.

View Article and Find Full Text PDF