A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Power-efficiency constraint for chemical motors. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chemical gradients provide the primordial energy for biological functions by driving the mechanical movement of microscopic engines. Their thermodynamic properties remain elusive, especially concerning the dynamic change in energy demand in biological systems. In this article, we derive a constraint relation between the output power and the conversion efficiency for a chemically fueled steady-state rotary motor analogous to the F_{0} motor of ATPase. We find that the efficiency at maximum power is half of the maximum quasistatic efficiency. These findings shall aid in the understanding of natural chemical engines and inspire the manual design and control of chemically fueled microscale engines.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.111.024404DOI Listing

Publication Analysis

Top Keywords

chemically fueled
8
power-efficiency constraint
4
constraint chemical
4
chemical motors
4
motors chemical
4
chemical gradients
4
gradients provide
4
provide primordial
4
primordial energy
4
energy biological
4

Similar Publications