98%
921
2 minutes
20
Background: Antidopaminergic medications (ADM) are often used for symptom management of Huntington's disease (HD). Evidence from past research suggests that ADMs are associated with worse clinical outcomes in HD, but their impact on various domains remains underexplored.
Objective: We used causal inference analysis to understand the impact of ADM use on measures of clinical progression in HD across multiple domains over 2 years.
Methods: We used the Enroll-HD database with a new-user design, which compared a cohort that initiated ADM use after the first visit with an unexposed cohort that remained off ADMs. To control for 27 covariates, we used a doubly robust targeted maximum likelihood estimation and conducted two analyses. First, we analyzed ADM treatment 2 years post-baseline and separately for 12 outcome measures. Second, we examined the association of ADM dose with measures of clinical outcomes.
Results: The ADM-exposed group exhibited faster change in measures of clinical outcome compared with the off-ADM group, which was statistically reliable in cognitive and functional outcome measures, and the composite Unified Huntington's Disease Rating Scale (cUHDRS). Motor domain analyses showed faster change in bradykinesia in the ADM-exposed group versus off-ADM but no difference in chorea or total motor score (TMS). Higher ADM doses also showed greater differences compared to the off-ADM group.
Conclusions: ADM use was associated with more rapid change in clinical measures, particularly in cognitive and functional domains. However, assumptions required to establish causation between ADM use and disease progression may not have been fully met, and further research is warranted. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12089908 | PMC |
http://dx.doi.org/10.1002/mds.30164 | DOI Listing |
Cell Biochem Biophys
September 2025
Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India.
Aging Cell
September 2025
Department of Cell Systems & Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA.
The Hippo signaling pathway is a key regulator of cell growth and cell survival, and hyperactivation of the Hippo pathway has been implicated in neurodegenerative diseases such as Huntington's disease. However, the role of Hippo signaling in Alzheimer's disease (AD) remains unclear. We observed that hyperactivation of Hippo signaling occurred in the AD model 5xFAD mice.
View Article and Find Full Text PDFCureus
August 2025
Internal Medicine, Jinnah Postgraduate Medical Centre, Karachi, PAK.
Neurodegenerative diseases and spinal cord injuries (SCI) pose a significant burden on the healthcare system globally. Diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease precipitate cognitive, motor, and behavioral deficits. Parallelly, spinal cord injuries produce sensory and motor deficits, which are burdensome psychologically, socially, and economically.
View Article and Find Full Text PDFMov Disord Clin Pract
September 2025
Department of neuroscience, UC San Diego, San Diego, California, USA.
Background: Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a mutation in the huntingtin gene on chromosome 4, leading to progressive cognitive decline, motor impairment, and functional disability. Although balance impairment is recognized in HD, its onset and evolution with disease stage remain poorly understood.
Objective: The aim was to track the onset and evolution of balance impairment in HD with progression of disease stage using the BTrackS Balance Plate.
Basic Clin Pharmacol Toxicol
October 2025
Department of Medical Pharmacology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey.
Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and frontotemporal dementia represent a significant global health burden with limited therapeutic options. Current treatments are primarily symptomatic and fail to modify disease progression, emphasizing the urgent need for novel, mechanism-based interventions. Recent advances in molecular neuroscience have identified several non-classical pathogenic pathways, including neuroinflammation, mitochondrial dysfunction, impaired autophagy and proteostasis, synaptic degeneration and non-coding RNA dysregulation.
View Article and Find Full Text PDF